BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 2749376)

  • 1. Prediction of the compressive strength of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Spine (Phila Pa 1976); 1989 Jun; 14(6):606-10. PubMed ID: 2749376
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the compressive strength of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Clin Biomech (Bristol, Avon); 1989; 4 Suppl 2():iii-27. PubMed ID: 23906213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Axial compressive strength of thoraco-lumbar vertebrae--an experimental biomechanical study].
    Konermann W; Stubbe F; Link T; Meier N
    Z Orthop Ihre Grenzgeb; 1999; 137(3):223-31. PubMed ID: 10441827
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental research on the quantitative computed tomographic prediction of the compressive strength of the thoracolumbar vertebrae].
    Biggemann M; Hilweg D; Brinckmann P
    Rofo; 1989 Sep; 151(3):322-5. PubMed ID: 2552526
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of the compressive strength of vertebral bodies of the lumbar spine by quantitative computed tomography.
    Biggemann M; Hilweg D; Brinckmann P
    Skeletal Radiol; 1988; 17(4):264-9. PubMed ID: 3212488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Risk of vertebral insufficiency fractures in relation to compressive strength predicted by quantitative computed tomography.
    Biggemann M; Hilweg D; Seidel S; Horst M; Brinckmann P
    Eur J Radiol; 1991; 13(1):6-10. PubMed ID: 1832380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Noninvasive prediction of vertebral body compressive strength using nonlinear finite element method and an image based technique.
    Zeinali A; Hashemi B; Akhlaghpoor S
    Phys Med; 2010 Apr; 26(2):88-97. PubMed ID: 19781969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [The texture-analysis of high-resolution computed tomograms as an additional procedure in osteoporosis diagnosis: in-vitro studies on vertebral segments].
    Waldt S; Meier N; Renger B; Lenzen H; Fiebich M; Rummeny EJ; Link TM
    Rofo; 1999 Aug; 171(2):136-42. PubMed ID: 10506888
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertebral body trabecular density at the thoracolumbar junction using quantitative computed tomography. A post-mortem study.
    Singer KP; Breidahl PD
    Acta Radiol; 1990 Jan; 31(1):37-40. PubMed ID: 2340223
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determinants and heterogeneity of mechanical competence throughout the thoracolumbar spine of elderly women and men.
    Eckstein F; Fischbeck M; Kuhn V; Link TM; Priemel M; Lochmüller EM
    Bone; 2004 Aug; 35(2):364-74. PubMed ID: 15268885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of vertebral body compressive fracture using quantitative computed tomography.
    McBroom RJ; Hayes WC; Edwards WT; Goldberg RP; White AA
    J Bone Joint Surg Am; 1985 Oct; 67(8):1206-14. PubMed ID: 4055845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of lumbar vertebral strength of elderly men based on quantitative computed tomography images using machine learning.
    Zhang M; Gong H; Zhang K; Zhang M
    Osteoporos Int; 2019 Nov; 30(11):2271-2282. PubMed ID: 31401661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fat in the prediction of bone strength of porcine lumbar vertebrate by quantitative computed tomography.
    Yu CY; Lin RM; Tsai KH; Chang GL
    J Formos Med Assoc; 1995 Jul; 94(7):418-22. PubMed ID: 7549567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue fracture of human lumbar vertebrae.
    Brinckmann P; Biggemann M; Hilweg D
    Clin Biomech (Bristol, Avon); 1988; 3 Suppl 1():i-S23. PubMed ID: 23905925
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of implant size and device keel on vertebral compression properties in lumbar total disc replacement.
    Auerbach JD; Ballester CM; Hammond F; Carine ET; Balderston RA; Elliott DM
    Spine J; 2010 Apr; 10(4):333-40. PubMed ID: 20362251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relations between radiographic trabecular pattern and biomechanical characteristics of human vertebrae.
    Korstjens CM; Mosekilde L; Spruijt RJ; Geraets WG; van der Stelt PF
    Acta Radiol; 1996 Sep; 37(5):618-24. PubMed ID: 8915263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load.
    Cody DD; Goldstein SA; Flynn MJ; Brown EB
    Spine (Phila Pa 1976); 1991 Feb; 16(2):146-54. PubMed ID: 2011769
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatigue fracture of human lumbar vertebrae.
    Brinckmann P; Johannleweling N; Hilweg D; Biggemann M
    Clin Biomech (Bristol, Avon); 1987 May; 2(2):94-6. PubMed ID: 23915651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Correlation of mechanical properties of vertebral trabecular bone with equivalent mineral density as measured by computed tomography.
    Lang SM; Moyle DD; Berg EW; Detorie N; Gilpin AT; Pappas NJ; Reynolds JC; Tkacik M; Waldron RL
    J Bone Joint Surg Am; 1988 Dec; 70(10):1531-8. PubMed ID: 3198678
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative image analysis of vertebral body architecture--improved diagnosis in osteoporosis based on high-resolution computed tomography.
    Mundinger A; Wiesmeier B; Dinkel E; Helwig A; Beck A; Schulte Moenting J
    Br J Radiol; 1993 Mar; 66(783):209-13. PubMed ID: 8472113
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.