BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 27493952)

  • 1. Influence of the Dermis Thickness on the Results of the Skin Treatment with Monopolar and Bipolar Radiofrequency Currents.
    Kruglikov IL
    Biomed Res Int; 2016; 2016():1953203. PubMed ID: 27493952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo skin reactions from pulsed-type, bipolar, alternating current radiofrequency treatment using invasive noninsulated electrodes.
    Cho SB; Na J; Zheng Z; Lim JM; Kang JS; Lee JH; Lee SE
    Skin Res Technol; 2018 May; 24(2):318-325. PubMed ID: 29368439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal and elastic response of subcutaneous tissue with different fibrous septa architectures to RF heating: numerical study.
    González-Suárez A; Gutierrez-Herrera E; Berjano E; Jimenez Lozano JN; Franco W
    Lasers Surg Med; 2015 Feb; 47(2):183-95. PubMed ID: 25651998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Computational and Experimental Study to Compare the Effectiveness of Bipolar Mode With Phase-Shift Angle Mode in Radiofrequency Fat Dissolution on Subcutaneous Tissue.
    Lianru Z; Yu Z; Jia K; Yinmin X; ChengLi S
    Lasers Surg Med; 2021 Dec; 53(10):1395-1412. PubMed ID: 34036607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inflammatory effect of monopolar radiofrequency treatment on collagen fibrils in rabbit skins.
    Choi S; Cheong Y; Shin JH; Jin KH; Park HK
    J Biomed Nanotechnol; 2013 Aug; 9(8):1403-7. PubMed ID: 23926808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive thermal tissue reactions of 7-MHz intense focused ultrasound and 1-MHz and 6-MHz radiofrequency on cadaveric skin.
    Kim H; Ahn KJ; Lee S; Park H; Cho SB
    Skin Res Technol; 2019 Mar; 25(2):171-178. PubMed ID: 30320473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiofrequency treatment induces fibroblast growth factor 2 expression and subsequently promotes neocollagenesis and neoangiogenesis in the skin tissue.
    Meyer PF; de Oliveira P; Silva FKBA; da Costa ACS; Pereira CRA; Casenave S; Valentim Silva RM; Araújo-Neto LG; Santos-Filho SD; Aizamaque E; Araújo HG; Bernardo-Filho M; Carvalho MGF; Soares CD
    Lasers Med Sci; 2017 Nov; 32(8):1727-1736. PubMed ID: 28569344
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel multi-source phase-controlled radiofrequency technology for non-ablative and micro-ablative treatment of wrinkles, lax skin and acne scars.
    Elman M; Harth Y
    Laser Ther; 2011; 20(2):139-44. PubMed ID: 24155523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Painless, safe, and efficacious noninvasive skin tightening, body contouring, and cellulite reduction using multisource 3DEEP radiofrequency.
    Harth Y
    J Cosmet Dermatol; 2015 Mar; 14(1):70-5. PubMed ID: 25598274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tissue models for RF exposure evaluation at frequencies above 6 GHz.
    Ziskin MC; Alekseev SI; Foster KR; Balzano Q
    Bioelectromagnetics; 2018 Apr; 39(3):173-189. PubMed ID: 29418010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pilot clinical study of a novel minimally invasive bipolar microneedle radiofrequency device.
    Hantash BM; Renton B; Berkowitz RL; Stridde BC; Newman J
    Lasers Surg Med; 2009 Feb; 41(2):87-95. PubMed ID: 19226570
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal effects of percutaneous application of plasma/radiofrequency energy on porcine dermis and fibroseptal network.
    Ruff PG
    J Cosmet Dermatol; 2021 Jul; 20(7):2125-2131. PubMed ID: 33197275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Cellular subcutaneous tissue. Anatomic observations].
    Marquart-Elbaz C; Varnaison E; Sick H; Grosshans E; Cribier B
    Ann Dermatol Venereol; 2001 Nov; 128(11):1207-13. PubMed ID: 11908164
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled volumetric heating of subcutaneous adipose tissue using a novel radiofrequency technology.
    Franco W; Kothare A; Goldberg DJ
    Lasers Surg Med; 2009 Dec; 41(10):745-50. PubMed ID: 20014265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of controlled volumetric tissue heating with radiofrequency on cellulite and the subcutaneous tissue of the buttocks and thighs.
    Emilia del Pino M; Rosado RH; Azuela A; Graciela Guzmán M; Argüelles D; Rodríguez C; Rosado GM
    J Drugs Dermatol; 2006 Sep; 5(8):714-22. PubMed ID: 16989185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An anatomic comparison of the skin of five donor sites for dermal fat graft.
    Hwang K; Kim DJ; Lee IJ
    Ann Plast Surg; 2001 Mar; 46(3):327-31. PubMed ID: 11293528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative histometric analysis of the effects of high-intensity focused ultrasound and radiofrequency on skin.
    Suh DH; Choi JH; Lee SJ; Jeong KH; Song KY; Shin MK
    J Cosmet Laser Ther; 2015; 17(5):230-6. PubMed ID: 25723905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Assessment of Mechanical Stress Induced by Radiofrequency Currents on Skin Interfaces.
    Kruglikov IL
    Biomed Res Int; 2021; 2021():6623757. PubMed ID: 34671678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of Non-invasive Fat Reduction Using a Resistive Electric Transfer-based Radiofrequency Device With Multi-channel Handpieces.
    Koo J; Chae Y; Kim SE; Shin S; Shim KM; Jang K; Kang SS
    In Vivo; 2024; 38(4):1750-1757. PubMed ID: 38936950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological examination of skin tissue in the porcine animal model after simultaneous and consecutive application of monopolar radiofrequency and targeted pressure energy.
    Kinney BM; Kanakov D; Yonkova P
    J Cosmet Dermatol; 2020 Jan; 19(1):93-101. PubMed ID: 31794139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.