These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 27494046)

  • 1. Dissecting the Influence of Protein Flexibility on the Location and Thermodynamic Profile of Explicit Water Molecules in Protein-Ligand Binding.
    Yang Y; Lill MA
    J Chem Theory Comput; 2016 Sep; 12(9):4578-92. PubMed ID: 27494046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Calculation of Thermodynamic Properties of Bound Water Molecules.
    Yang Y; Abdallah AHA; Lill MA
    Methods Mol Biol; 2018; 1762():389-402. PubMed ID: 29594782
    [TBL] [Abstract][Full Text] [Related]  

  • 3. WATsite2.0 with PyMOL Plugin: Hydration Site Prediction and Visualization.
    Yang Y; Hu B; Lill MA
    Methods Mol Biol; 2017; 1611():123-134. PubMed ID: 28451976
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient and Accurate Hydration Site Profiling for Enclosed Binding Sites.
    Masters MR; Mahmoud AH; Yang Y; Lill MA
    J Chem Inf Model; 2018 Nov; 58(11):2183-2188. PubMed ID: 30289252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association.
    Cuzzolin A; Deganutti G; Salmaso V; Sturlese M; Moro S
    ChemMedChem; 2018 Mar; 13(6):522-531. PubMed ID: 29193885
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbohydrate-binding proteins: Dissecting ligand structures through solvent environment occupancy.
    Gauto DF; Di Lella S; Guardia CM; Estrin DA; Martí MA
    J Phys Chem B; 2009 Jun; 113(25):8717-24. PubMed ID: 19485380
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accounting for the Central Role of Interfacial Water in Protein-Ligand Binding Free Energy Calculations.
    Ben-Shalom IY; Lin Z; Radak BK; Lin C; Sherman W; Gilson MK
    J Chem Theory Comput; 2020 Dec; 16(12):7883-7894. PubMed ID: 33206520
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic Characterization of Hydration Sites from Integral Equation-Derived Free Energy Densities: Application to Protein Binding Sites and Ligand Series.
    Güssregen S; Matter H; Hessler G; Lionta E; Heil J; Kast SM
    J Chem Inf Model; 2017 Jul; 57(7):1652-1666. PubMed ID: 28565907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. WaterKit: Thermodynamic Profiling of Protein Hydration Sites.
    Eberhardt J; Forli S
    J Chem Theory Comput; 2023 May; 19(9):2535-2556. PubMed ID: 37094087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. WATsite: hydration site prediction program with PyMOL interface.
    Hu B; Lill MA
    J Comput Chem; 2014 Jun; 35(16):1255-60. PubMed ID: 24752524
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Incorporating replacement free energy of binding-site waters in molecular docking.
    Sun H; Zhao L; Peng S; Huang N
    Proteins; 2014 Sep; 82(9):1765-76. PubMed ID: 24549784
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of Ordered Water Molecules in Protein Binding Sites from Molecular Dynamics Simulations: The Impact of Ligand Binding on Hydration Networks.
    Rudling A; Orro A; Carlsson J
    J Chem Inf Model; 2018 Feb; 58(2):350-361. PubMed ID: 29308882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein Hydration Thermodynamics: The Influence of Flexibility and Salt on Hydrophobin II Hydration.
    Remsing RC; Xi E; Patel AJ
    J Phys Chem B; 2018 Apr; 122(13):3635-3646. PubMed ID: 29394062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular modeling of hydration in drug design.
    Mancera RL
    Curr Opin Drug Discov Devel; 2007 May; 10(3):275-80. PubMed ID: 17554853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy comparison of several common implicit solvent models and their implementations in the context of protein-ligand binding.
    Katkova EV; Onufriev AV; Aguilar B; Sulimov VB
    J Mol Graph Model; 2017 Mar; 72():70-80. PubMed ID: 28064081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Attach-Pull-Release Calculations of Ligand Binding and Conformational Changes on the First BRD4 Bromodomain.
    Heinzelmann G; Henriksen NM; Gilson MK
    J Chem Theory Comput; 2017 Jul; 13(7):3260-3275. PubMed ID: 28564537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic analysis of water molecules at the surface of proteins and applications to binding site prediction and characterization.
    Beuming T; Che Y; Abel R; Kim B; Shanmugasundaram V; Sherman W
    Proteins; 2012 Mar; 80(3):871-83. PubMed ID: 22223256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics of buried water clusters at a protein-ligand binding interface.
    Li Z; Lazaridis T
    J Phys Chem B; 2006 Jan; 110(3):1464-75. PubMed ID: 16471698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assessment of Hydration Thermodynamics at Protein Interfaces with Grid Cell Theory.
    Gerogiokas G; Southey MW; Mazanetz MP; Heifetz A; Bodkin M; Law RJ; Henchman RH; Michel J
    J Phys Chem B; 2016 Oct; 120(40):10442-10452. PubMed ID: 27645529
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermodynamic Insight into the Effects of Water Displacement and Rearrangement upon Ligand Modifications using Molecular Dynamics Simulations.
    Wahl J; Smieško M
    ChemMedChem; 2018 Jul; 13(13):1325-1335. PubMed ID: 29726604
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.