These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 27494082)
1. The role of colloidal plasmonic nanostructures in organic solar cells. Singh CR; Honold T; Gujar TP; Retsch M; Fery A; Karg M; Thelakkat M Phys Chem Chem Phys; 2016 Aug; 18(33):23155-63. PubMed ID: 27494082 [TBL] [Abstract][Full Text] [Related]
2. Plasmonic effect of spray-deposited Au nanoparticles on the performance of inverted organic solar cells. Chaturvedi N; Swami SK; Dutta V Nanoscale; 2014 Sep; 6(18):10772-8. PubMed ID: 25100621 [TBL] [Abstract][Full Text] [Related]
3. Plasmonic Metal Nanoparticles with Core-Bishell Structure for High-Performance Organic and Perovskite Solar Cells. Yao K; Zhong H; Liu Z; Xiong M; Leng S; Zhang J; Xu YX; Wang W; Zhou L; Huang H; Jen AK ACS Nano; 2019 May; 13(5):5397-5409. PubMed ID: 31017763 [TBL] [Abstract][Full Text] [Related]
4. Plasmonic Effect of Gold Nanostars in Highly Efficient Organic and Perovskite Solar Cells. Ginting RT; Kaur S; Lim DK; Kim JM; Lee JH; Lee SH; Kang JW ACS Appl Mater Interfaces; 2017 Oct; 9(41):36111-36118. PubMed ID: 28937203 [TBL] [Abstract][Full Text] [Related]
5. E-beam deposited Ag-nanoparticles plasmonic organic solar cell and its absorption enhancement analysis using FDTD-based cylindrical nano-particle optical model. Kim RS; Zhu J; Park JH; Li L; Yu Z; Shen H; Xue M; Wang KL; Park G; Anderson TJ; Pei Q Opt Express; 2012 Jun; 20(12):12649-57. PubMed ID: 22714293 [TBL] [Abstract][Full Text] [Related]
6. The impact of plasmonic electrodes on the photocarrier extraction of inverted organic bulk heterojunction solar cells. Kolb F; El Gemayel M; Khan I; Dostalek J; Trattnig R; Sommer C; List-Kratochvil EJW Appl Phys A Mater Sci Process; 2023; 129(3):230. PubMed ID: 36876320 [TBL] [Abstract][Full Text] [Related]
7. Self-Assembled Monolayer of Wavelength-Scale Core-Shell Particles for Low-Loss Plasmonic and Broadband Light Trapping in Solar Cells. Dabirian A; Byranvand MM; Naqavi A; Kharat AN; Taghavinia N ACS Appl Mater Interfaces; 2016 Jan; 8(1):247-55. PubMed ID: 26726990 [TBL] [Abstract][Full Text] [Related]
8. Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array. Chou SY; Ding W Opt Express; 2013 Jan; 21 Suppl 1():A60-76. PubMed ID: 23389276 [TBL] [Abstract][Full Text] [Related]
9. Enhancing Efficiency of Nonfullerene Organic Solar Cells via Using Polyelectrolyte-Coated Plasmonic Gold Nanorods as Rear Interfacial Modifiers. Du Z; Yu T; He W; Yurtsever A; Izquierdo R; Jafari M; Siaj M; Ma D ACS Appl Mater Interfaces; 2022 Apr; 14(14):16185-16196. PubMed ID: 35352950 [TBL] [Abstract][Full Text] [Related]
10. Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance. Lee S; Mason DR; In S; Park N Opt Express; 2014 Jun; 22 Suppl 4():A1145-52. PubMed ID: 24978077 [TBL] [Abstract][Full Text] [Related]
11. Inverted Ultrathin Organic Solar Cells with a Quasi-Grating Structure for Efficient Carrier Collection and Dip-less Visible Optical Absorption. In S; Park N Sci Rep; 2016 Feb; 6():21784. PubMed ID: 26902974 [TBL] [Abstract][Full Text] [Related]
12. Broadband absorption enhancement achieved by optical layer mediated plasmonic solar cell. Ren W; Zhang G; Wu Y; Ding H; Shen Q; Zhang K; Li J; Pan N; Wang X Opt Express; 2011 Dec; 19(27):26536-50. PubMed ID: 22274238 [TBL] [Abstract][Full Text] [Related]
13. Impact of hybrid plasmonic nanoparticles on the charge carrier mobility of P3HT:PCBM polymer solar cells. Omrani M; Fallah H; Choy KL; Abdi-Jalebi M Sci Rep; 2021 Oct; 11(1):19774. PubMed ID: 34611202 [TBL] [Abstract][Full Text] [Related]
14. Synergistic Effects of Localized Surface Plasmon Resonance, Surface Plasmon Polariton, and Waveguide Plasmonic Resonance on the Same Material: A Promising Hypothesis to Enhance Organic Solar Cell Efficiency. Ibrahim Zamkoye I; Lucas B; Vedraine S Nanomaterials (Basel); 2023 Jul; 13(15):. PubMed ID: 37570526 [TBL] [Abstract][Full Text] [Related]
15. High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmon-Optical and Plasmon-Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Ren X; Cheng J; Zhang S; Li X; Rao T; Huo L; Hou J; Choy WC Small; 2016 Oct; 12(37):5200-5207. PubMed ID: 27487460 [TBL] [Abstract][Full Text] [Related]
16. Plasmonically Engineered Textile Polymer Solar Cells for High-Performance, Wearable Photovoltaics. Cho SH; Lee J; Lee MJ; Kim HJ; Lee SM; Choi KC ACS Appl Mater Interfaces; 2019 Jun; 11(23):20864-20872. PubMed ID: 31144506 [TBL] [Abstract][Full Text] [Related]
17. Improved Power Conversion Efficiency of Inverted Organic Solar Cells by Incorporating Au Nanorods into Active Layer. He Y; Liu C; Li J; Zhang X; Li Z; Shen L; Guo W; Ruan S ACS Appl Mater Interfaces; 2015 Jul; 7(29):15848-54. PubMed ID: 26151833 [TBL] [Abstract][Full Text] [Related]
18. Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Stelling C; Singh CR; Karg M; König TA; Thelakkat M; Retsch M Sci Rep; 2017 Feb; 7():42530. PubMed ID: 28198406 [TBL] [Abstract][Full Text] [Related]
19. Can plasmonic Al nanoparticles improve absorption in triple junction solar cells? Yang L; Pillai S; Green MA Sci Rep; 2015 Jul; 5():11852. PubMed ID: 26138405 [TBL] [Abstract][Full Text] [Related]
20. Efficiency Enhancement of PbS Quantum Dot/ZnO Nanowire Bulk-Heterojunction Solar Cells by Plasmonic Silver Nanocubes. Kawawaki T; Wang H; Kubo T; Saito K; Nakazaki J; Segawa H; Tatsuma T ACS Nano; 2015 Apr; 9(4):4165-72. PubMed ID: 25785476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]