BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 27494086)

  • 1. Molecular genetic approaches for environmental stress tolerant crop plants: Progress and prospects.
    Kaur R; Ghosh AK; Bhunia RK
    Recent Pat Biotechnol; 2016 Aug; ():. PubMed ID: 27494086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.
    Kaur R; Kumar Bhunia R; Ghosh AK
    Recent Pat Biotechnol; 2016; 10(1):12-29. PubMed ID: 27494733
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitigating abiotic stress: microbiome engineering for improving agricultural production and environmental sustainability.
    Phour M; Sindhu SS
    Planta; 2022 Sep; 256(5):85. PubMed ID: 36125564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of endophytes on rice fitness under environmental stresses.
    Ganie SA; Bhat JA; Devoto A
    Plant Mol Biol; 2022 Jul; 109(4-5):447-467. PubMed ID: 34859329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation.
    Verma KK; Song XP; Budeguer F; Nikpay A; Enrique R; Singh M; Zhang BQ; Wu JM; Li YR
    Plant Signal Behav; 2022 Dec; 17(1):2108253. PubMed ID: 35959678
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects.
    Bhatnagar-Mathur P; Vadez V; Sharma KK
    Plant Cell Rep; 2008 Mar; 27(3):411-24. PubMed ID: 18026957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Candidate Genes Associated with Abiotic Stress Response in Plants as Tools to Engineer Tolerance to Drought, Salinity and Extreme Temperatures in Wheat: An Overview.
    Trono D; Pecchioni N
    Plants (Basel); 2022 Dec; 11(23):. PubMed ID: 36501397
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic modification strategies for enhancing plant resilience to abiotic stresses in the context of climate change.
    KhokharVoytas A; Shahbaz M; Maqsood MF; Zulfiqar U; Naz N; Iqbal UZ; Sara M; Aqeel M; Khalid N; Noman A; Zulfiqar F; Al Syaad KM; AlShaqhaa MA
    Funct Integr Genomics; 2023 Aug; 23(3):283. PubMed ID: 37642792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing.
    Rahman MU; Zulfiqar S; Raza MA; Ahmad N; Zhang B
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429019
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Finger Millet: A "Certain" Crop for an "Uncertain" Future and a Solution to Food Insecurity and Hidden Hunger under Stressful Environments.
    Gupta SM; Arora S; Mirza N; Pande A; Lata C; Puranik S; Kumar J; Kumar A
    Front Plant Sci; 2017; 8():643. PubMed ID: 28487720
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacterial ACC deaminase: Insights into enzymology, biochemistry, genetics, and potential role in amelioration of environmental stress in crop plants.
    Shahid M; Singh UB; Khan MS; Singh P; Kumar R; Singh RN; Kumar A; Singh HV
    Front Microbiol; 2023; 14():1132770. PubMed ID: 37180266
    [TBL] [Abstract][Full Text] [Related]  

  • 14. NAC transcription factors in plant multiple abiotic stress responses: progress and prospects.
    Shao H; Wang H; Tang X
    Front Plant Sci; 2015; 6():902. PubMed ID: 26579152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses.
    Abdelrahman M; Burritt DJ; Tran LP
    Semin Cell Dev Biol; 2018 Nov; 83():86-94. PubMed ID: 28668354
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic engineering of crops: a ray of hope for enhanced food security.
    Gill SS; Gill R; Tuteja R; Tuteja N
    Plant Signal Behav; 2014; 9(3):e28545. PubMed ID: 24686131
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of genomics-assisted breeding for generation of climate resilient crops: progress and prospects.
    Kole C; Muthamilarasan M; Henry R; Edwards D; Sharma R; Abberton M; Batley J; Bentley A; Blakeney M; Bryant J; Cai H; Cakir M; Cseke LJ; Cockram J; de Oliveira AC; De Pace C; Dempewolf H; Ellison S; Gepts P; Greenland A; Hall A; Hori K; Hughes S; Humphreys MW; Iorizzo M; Ismail AM; Marshall A; Mayes S; Nguyen HT; Ogbonnaya FC; Ortiz R; Paterson AH; Simon PW; Tohme J; Tuberosa R; Valliyodan B; Varshney RK; Wullschleger SD; Yano M; Prasad M
    Front Plant Sci; 2015; 6():563. PubMed ID: 26322050
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability.
    Mickelbart MV; Hasegawa PM; Bailey-Serres J
    Nat Rev Genet; 2015 Apr; 16(4):237-51. PubMed ID: 25752530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.