BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27494086)

  • 21. Improving Potato Stress Tolerance and Tuber Yield Under a Climate Change Scenario - A Current Overview.
    Dahal K; Li XQ; Tai H; Creelman A; Bizimungu B
    Front Plant Sci; 2019; 10():563. PubMed ID: 31139199
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Low Temperature Stress Tolerance: An Insight Into the Omics Approaches for Legume Crops.
    Bhat KA; Mahajan R; Pakhtoon MM; Urwat U; Bashir Z; Shah AA; Agrawal A; Bhat B; Sofi PA; Masi A; Zargar SM
    Front Plant Sci; 2022; 13():888710. PubMed ID: 35720588
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Combined Abiotic Stresses Related to Climate Change on Root Growth in Crops.
    Sánchez-Bermúdez M; Del Pozo JC; Pernas M
    Front Plant Sci; 2022; 13():918537. PubMed ID: 35845642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic manipulation for abiotic stress resistance traits in crops.
    Esmaeili N; Shen G; Zhang H
    Front Plant Sci; 2022; 13():1011985. PubMed ID: 36212298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Halobacteria-Based Biofertilizers: A Promising Alternative for Enhancing Soil Fertility and Crop Productivity under Biotic and Abiotic Stresses-A Review.
    Masmoudi F; Alsafran M; Jabri HA; Hosseini H; Trigui M; Sayadi S; Tounsi S; Saadaoui I
    Microorganisms; 2023 May; 11(5):. PubMed ID: 37317222
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Does plant-Microbe interaction confer stress tolerance in plants: A review?
    Kumar A; Verma JP
    Microbiol Res; 2018 Mar; 207():41-52. PubMed ID: 29458867
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Crop microbiome: their role and advances in molecular and omic techniques for the sustenance of agriculture.
    Rai S; Omar AF; Rehan M; Al-Turki A; Sagar A; Ilyas N; Sayyed RZ; Hasanuzzaman M
    Planta; 2022 Dec; 257(2):27. PubMed ID: 36583789
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Fungal Endophytes to Combat Biotic and Abiotic Stresses for Climate-Smart and Sustainable Agriculture.
    Verma A; Shameem N; Jatav HS; Sathyanarayana E; Parray JA; Poczai P; Sayyed RZ
    Front Plant Sci; 2022; 13():953836. PubMed ID: 35865289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nexus on climate change: agriculture and possible solution to cope future climate change stresses.
    Shahzad A; Ullah S; Dar AA; Sardar MF; Mehmood T; Tufail MA; Shakoor A; Haris M
    Environ Sci Pollut Res Int; 2021 Mar; 28(12):14211-14232. PubMed ID: 33515149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Heat and Drought Stresses in Crops and Approaches for Their Mitigation.
    Lamaoui M; Jemo M; Datla R; Bekkaoui F
    Front Chem; 2018; 6():26. PubMed ID: 29520357
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Ameliorating the effects of multiple stresses on agronomic traits in crops: modern biotechnological and omics approaches.
    Haq SAU; Bashir T; Roberts TH; Husaini AM
    Mol Biol Rep; 2023 Dec; 51(1):41. PubMed ID: 38158512
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation.
    Rajpal VR; Singh A; Kathpalia R; Thakur RK; Khan MK; Pandey A; Hamurcu M; Raina SN
    Front Plant Sci; 2023; 14():1127239. PubMed ID: 36998696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional genomics to study stress responses in crop legumes: progress and prospects.
    Kudapa H; Ramalingam A; Nayakoti S; Chen X; Zhuang WJ; Liang X; Kahl G; Edwards D; Varshney RK
    Funct Plant Biol; 2013 Dec; 40(12):1221-1233. PubMed ID: 32481190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. CRISPR/Cas approach: A new way of looking at plant-abiotic interactions.
    Mushtaq M; Bhat JA; Mir ZA; Sakina A; Ali S; Singh AK; Tyagi A; Salgotra RK; Dar AA; Bhat R
    J Plant Physiol; 2018; 224-225():156-162. PubMed ID: 29655033
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Synergism: biocontrol agents and biostimulants in reducing abiotic and biotic stresses in crop.
    Anuar MSK; Hashim AM; Ho CL; Wong MY; Sundram S; Saidi NB; Yusof MT
    World J Microbiol Biotechnol; 2023 Mar; 39(5):123. PubMed ID: 36934342
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protective and defensive role of anthocyanins under plant abiotic and biotic stresses: An emerging application in sustainable agriculture.
    Kaur S; Tiwari V; Kumari A; Chaudhary E; Sharma A; Ali U; Garg M
    J Biotechnol; 2023 Jan; 361():12-29. PubMed ID: 36414125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Achieving crop stress tolerance and improvement--an overview of genomic techniques.
    Rasool S; Ahmad P; Rehman MU; Arif A; Anjum NA
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1395-408. PubMed ID: 26440315
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects.
    Etesami H; Maheshwari DK
    Ecotoxicol Environ Saf; 2018 Jul; 156():225-246. PubMed ID: 29554608
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.