These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27494313)

  • 21. Mitochondrial Toxicity of Cadmium Telluride Quantum Dot Nanoparticles in Mammalian Hepatocytes.
    Nguyen KC; Rippstein P; Tayabali AF; Willmore WG
    Toxicol Sci; 2015 Jul; 146(1):31-42. PubMed ID: 25809595
    [TBL] [Abstract][Full Text] [Related]  

  • 22. CdTe/CdSe quantum dots improve the binding affinities between α-amylase and polyphenols.
    Ni X
    Integr Biol (Camb); 2012 Mar; 4(3):301-9. PubMed ID: 22286694
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Toxicity assessment of repeated intravenous injections of arginine-glycine-aspartic acid peptide conjugated CdSeTe/ZnS quantum dots in mice.
    Wang YW; Yang K; Tang H; Chen D; Bai YL
    Int J Nanomedicine; 2014; 9():4809-17. PubMed ID: 25378922
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Toxicity of metal-ethylenediaminetetraacetic acid solution as a function of chemical speciation: an approach for toxicity assessment.
    Peraferrer C; Martínez M; Poch J; Villaescusa I
    Arch Environ Contam Toxicol; 2012 Nov; 63(4):484-94. PubMed ID: 22864588
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A novel toxicity mechanism of CdSe nanoparticles to Saccharomyces cerevisiae: enhancement of vacuolar membrane permeabilization (VMP).
    Sun M; Yu Q; Liu M; Chen X; Liu Z; Zhou H; Yuan Y; Liu L; Li M; Zhang C
    Chem Biol Interact; 2014 Sep; 220():208-13. PubMed ID: 25014418
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic energy budget approach to modeling mechanisms of CdSe quantum dot toxicity.
    Klanjscek T; Nisbet RM; Priester JH; Holden PA
    Ecotoxicology; 2013 Mar; 22(2):319-30. PubMed ID: 23291788
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Microbial toxicity of gallium- and indium-based oxide and arsenide nanoparticles.
    Nguyen CH; Field JA; Sierra-Alvarez R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2020; 55(2):168-178. PubMed ID: 31607225
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Acute oral and inhalation toxicities in rats with cadmium telluride.
    Zayed J; Philippe S
    Int J Toxicol; 2009; 28(4):259-65. PubMed ID: 19636069
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Isolation of a selenite-reducing and cadmium-resistant bacterium Pseudomonas sp. strain RB for microbial synthesis of CdSe nanoparticles.
    Ayano H; Miyake M; Terasawa K; Kuroda M; Soda S; Sakaguchi T; Ike M
    J Biosci Bioeng; 2014 May; 117(5):576-81. PubMed ID: 24216457
    [TBL] [Abstract][Full Text] [Related]  

  • 30. D-penicillamine capped cadmium telluride quantum dots as a novel fluorometric sensor of copper(II).
    Mohammad-Rezaei R; Razmi H; Abdolmohammad-Zadeh H
    Luminescence; 2013; 28(4):503-9. PubMed ID: 23447377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantum dot sensitized solar cells. A tale of two semiconductor nanocrystals: CdSe and CdTe.
    Bang JH; Kamat PV
    ACS Nano; 2009 Jun; 3(6):1467-76. PubMed ID: 19435373
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Altered toxicity of organic pollutants in water originated from simultaneous exposure to UV photolysis and CdSe/ZnS quantum dots.
    Kušić H; Leszczynska D
    Chemosphere; 2012 Oct; 89(7):900-6. PubMed ID: 22677523
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures.
    Kanaras AG; Sönnichsen C; Liu H; Alivisatos AP
    Nano Lett; 2005 Nov; 5(11):2164-7. PubMed ID: 16277446
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Study the damage of DNA molecules induced by three kinds of aqueous nanoparticles.
    Wang C; Gao X; Su X
    Talanta; 2010 Jan; 80(3):1228-33. PubMed ID: 20006079
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioremediation potential of bacteria able to reduce high levels of selenium and tellurium oxyanions.
    Maltman C; Yurkov V
    Arch Microbiol; 2018 Dec; 200(10):1411-1417. PubMed ID: 30039321
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of intrinsic high-level resistance to rare-earth oxides and oxyanions in members of the class Proteobacteria: characterization of tellurite, selenite, and rhodium sesquioxide reduction in Rhodobacter sphaeroides.
    Moore MD; Kaplan S
    J Bacteriol; 1992 Mar; 174(5):1505-14. PubMed ID: 1537795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review.
    Sharma VK; McDonald TJ; Sohn M; Anquandah GAK; Pettine M; Zboril R
    Chemosphere; 2017 Dec; 188():403-413. PubMed ID: 28892773
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Toxicity of cadmium selenide nanoparticles on the green microalgaChlorella vulgaris: inducing antioxidative defense response.
    Movafeghi A; Khataee A; Rezaee A; Kosari-Nasab M; Tarrahi R
    Environ Sci Pollut Res Int; 2019 Dec; 26(36):36380-36387. PubMed ID: 31713820
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Experimental and predicted acute toxicity of antibacterial compounds and their mixtures using the luminescent bacterium Vibrio fischeri.
    Villa S; Vighi M; Finizio A
    Chemosphere; 2014 Aug; 108():239-44. PubMed ID: 24529397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.