These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 27494433)

  • 1. Directed Assembly of Nanoparticle Catalysts on Nanowire Photoelectrodes for Photoelectrochemical CO2 Reduction.
    Kong Q; Kim D; Liu C; Yu Y; Su Y; Li Y; Yang P
    Nano Lett; 2016 Sep; 16(9):5675-80. PubMed ID: 27494433
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tailoring n-ZnO/p-Si branched nanowire heterostructures for selective photoelectrochemical water oxidation or reduction.
    Kargar A; Sun K; Jing Y; Choi C; Jeong H; Zhou Y; Madsen K; Naughton P; Jin S; Jung GY; Wang D
    Nano Lett; 2013 Jul; 13(7):3017-22. PubMed ID: 23746049
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Photoelectrochemical CO
    Roh I; Yu S; Lin CK; Louisia S; Cestellos-Blanco S; Yang P
    J Am Chem Soc; 2022 May; 144(18):8002-8006. PubMed ID: 35476928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoelectrochemical CO2 Reduction by a Molecular Cobalt(II) Catalyst on Planar and Nanostructured Si Surfaces.
    He D; Jin T; Li W; Pantovich S; Wang D; Li G
    Chemistry; 2016 Sep; 22(37):13064-7. PubMed ID: 27433926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hierarchical Inorganic Assemblies for Artificial Photosynthesis.
    Kim W; Edri E; Frei H
    Acc Chem Res; 2016 Sep; 49(9):1634-45. PubMed ID: 27575376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evident Enhancement of Photoelectrochemical Hydrogen Production by Electroless Deposition of M-B (M = Ni, Co) Catalysts on Silicon Nanowire Arrays.
    Yang Y; Wang M; Zhang P; Wang W; Han H; Sun L
    ACS Appl Mater Interfaces; 2016 Nov; 8(44):30143-30151. PubMed ID: 27762535
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artificial Photosynthesis at Efficiencies Greatly Exceeding That of Natural Photosynthesis.
    Dogutan DK; Nocera DG
    Acc Chem Res; 2019 Nov; 52(11):3143-3148. PubMed ID: 31593438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Boron-doped diamond semiconductor electrodes: Efficient photoelectrochemical CO
    Roy N; Hirano Y; Kuriyama H; Sudhagar P; Suzuki N; Katsumata KI; Nakata K; Kondo T; Yuasa M; Serizawa I; Takayama T; Kudo A; Fujishima A; Terashima C
    Sci Rep; 2016 Nov; 6():38010. PubMed ID: 27892544
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Core-shell photoanode developed by atomic layer deposition of Bi₂O₃ on Si nanowires for enhanced photoelectrochemical water splitting.
    Weng B; Xu F; Xu J
    Nanotechnology; 2014 Nov; 25(45):455402. PubMed ID: 25338216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals.
    Liu C; Gallagher JJ; Sakimoto KK; Nichols EM; Chang CJ; Chang MC; Yang P
    Nano Lett; 2015 May; 15(5):3634-9. PubMed ID: 25848808
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D Branched nanowire photoelectrochemical electrodes for efficient solar water splitting.
    Kargar A; Sun K; Jing Y; Choi C; Jeong H; Jung GY; Jin S; Wang D
    ACS Nano; 2013 Oct; 7(10):9407-15. PubMed ID: 24040832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surface Passivation of GaN Nanowires for Enhanced Photoelectrochemical Water-Splitting.
    Varadhan P; Fu HC; Priante D; Retamal JR; Zhao C; Ebaid M; Ng TK; Ajia I; Mitra S; Roqan IS; Ooi BS; He JH
    Nano Lett; 2017 Mar; 17(3):1520-1528. PubMed ID: 28177248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The Development of Cocatalysts for Photoelectrochemical CO
    Chang X; Wang T; Yang P; Zhang G; Gong J
    Adv Mater; 2019 Aug; 31(31):e1804710. PubMed ID: 30537099
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Functional Integration of Catalysts with Si Nanowire Photocathodes for Efficient Utilization of Photogenerated Charge Carriers.
    Lim SY; Seo D; Jang MS; Chung TD
    ACS Omega; 2021 Aug; 6(34):22311-22316. PubMed ID: 34497920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Back-illuminated photoelectrochemical flow cell for efficient CO
    Liu B; Wang T; Wang S; Zhang G; Zhong D; Yuan T; Dong H; Wu B; Gong J
    Nat Commun; 2022 Nov; 13(1):7111. PubMed ID: 36402767
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Optically and Electrochemically Decoupled Monolithic Photoelectrochemical Cell for High-Performance Solar-Driven Water Splitting.
    Oh S; Song H; Oh J
    Nano Lett; 2017 Sep; 17(9):5416-5422. PubMed ID: 28800240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biohybrid Cells for Photoelectrochemical Conversion Based on the HCOO
    Kong X; Gai P; Li F
    ACS Appl Bio Mater; 2020 Nov; 3(11):8069-8074. PubMed ID: 35019546
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CO
    Zhang S; Fan Q; Xia R; Meyer TJ
    Acc Chem Res; 2020 Jan; 53(1):255-264. PubMed ID: 31913013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Molecular Surface Functionalization Approach to Tuning Nanoparticle Electrocatalysts for Carbon Dioxide Reduction.
    Cao Z; Kim D; Hong D; Yu Y; Xu J; Lin S; Wen X; Nichols EM; Jeong K; Reimer JA; Yang P; Chang CJ
    J Am Chem Soc; 2016 Jul; 138(26):8120-5. PubMed ID: 27322487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Current Issues in Molecular Catalysis Illustrated by Iron Porphyrins as Catalysts of the CO2-to-CO Electrochemical Conversion.
    Costentin C; Robert M; Savéant JM
    Acc Chem Res; 2015 Dec; 48(12):2996-3006. PubMed ID: 26559053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.