These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
310 related articles for article (PubMed ID: 27494674)
1. Contributions of Mammalian Chimeras to Pluripotent Stem Cell Research. Mascetti VL; Pedersen RA Cell Stem Cell; 2016 Aug; 19(2):163-175. PubMed ID: 27494674 [TBL] [Abstract][Full Text] [Related]
2. From naïve pluripotency to chimeras: a new ethical challenge? Hyun I Development; 2015 Jan; 142(1):6-8. PubMed ID: 25516963 [TBL] [Abstract][Full Text] [Related]
3. The Pluripotency Continuum and Interspecies Chimeras. De Los Angeles A Curr Protoc Stem Cell Biol; 2019 Sep; 50(1):e87. PubMed ID: 31184444 [TBL] [Abstract][Full Text] [Related]
4. ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state. De Los Angeles A; Elsworth JD; Redmond DE Biochem Biophys Res Commun; 2019 Feb; 510(1):78-84. PubMed ID: 30660369 [TBL] [Abstract][Full Text] [Related]
5. Fitness selection in human pluripotent stem cells and interspecies chimeras: Implications for human development and regenerative medicine. Wu J; Barbaric I Dev Biol; 2021 Aug; 476():209-217. PubMed ID: 33891964 [TBL] [Abstract][Full Text] [Related]
6. Stem cell potency and the ability to contribute to chimeric organisms. Polejaeva I; Mitalipov S Reproduction; 2013 Mar; 145(3):R81-8. PubMed ID: 23221011 [TBL] [Abstract][Full Text] [Related]
7. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Masaki H; Kato-Itoh M; Umino A; Sato H; Hamanaka S; Kobayashi T; Yamaguchi T; Nishimura K; Ohtaka M; Nakanishi M; Nakauchi H Development; 2015 Sep; 142(18):3222-30. PubMed ID: 26023098 [TBL] [Abstract][Full Text] [Related]
8. Interspecies chimeras for human stem cell research. Masaki H; Nakauchi H Development; 2017 Jul; 144(14):2544-2547. PubMed ID: 28720651 [TBL] [Abstract][Full Text] [Related]
9. Frontiers of Pluripotency. De Los Angeles A Methods Mol Biol; 2019; 2005():3-27. PubMed ID: 31175642 [TBL] [Abstract][Full Text] [Related]
10. Apoptosis, G1 Phase Stall, and Premature Differentiation Account for Low Chimeric Competence of Human and Rhesus Monkey Naive Pluripotent Stem Cells. Aksoy I; Rognard C; Moulin A; Marcy G; Masfaraud E; Wianny F; Cortay V; Bellemin-Ménard A; Doerflinger N; Dirheimer M; Mayère C; Bourillot PY; Lynch C; Raineteau O; Joly T; Dehay C; Serrano M; Afanassieff M; Savatier P Stem Cell Reports; 2021 Jan; 16(1):56-74. PubMed ID: 33382978 [TBL] [Abstract][Full Text] [Related]
11. Production of mouse chimeras by aggregating pluripotent stem cells with embryos. Nagy A; Nagy K; Gertsenstein M Methods Enzymol; 2010; 476():123-49. PubMed ID: 20691864 [TBL] [Abstract][Full Text] [Related]
12. Chimeric contribution of human extended pluripotent stem cells to monkey embryos ex vivo. Tan T; Wu J; Si C; Dai S; Zhang Y; Sun N; Zhang E; Shao H; Si W; Yang P; Wang H; Chen Z; Zhu R; Kang Y; Hernandez-Benitez R; Martinez Martinez L; Nuñez Delicado E; Berggren WT; Schwarz M; Ai Z; Li T; Rodriguez Esteban C; Ji W; Niu Y; Izpisua Belmonte JC Cell; 2021 Apr; 184(8):2020-2032.e14. PubMed ID: 33861963 [TBL] [Abstract][Full Text] [Related]
13. Embryo-derived and induced pluripotent stem cells: Towards naive pluripotency and chimeric competency in rabbits. Afanassieff M; Perold F; Bouchereau W; Cadiou A; Beaujean N Exp Cell Res; 2020 Apr; 389(2):111908. PubMed ID: 32057751 [TBL] [Abstract][Full Text] [Related]
14. Dynamic Pluripotent Stem Cell States and Their Applications. Wu J; Izpisua Belmonte JC Cell Stem Cell; 2015 Nov; 17(5):509-25. PubMed ID: 26544113 [TBL] [Abstract][Full Text] [Related]
15. Parsing the pluripotency continuum in humans and non-human primates for interspecies chimera generation. De Los Angeles A Exp Cell Res; 2020 Feb; 387(1):111747. PubMed ID: 31778671 [TBL] [Abstract][Full Text] [Related]
16. The contribution of human/non-human animal chimeras to stem cell research. Levine S; Grabel L Stem Cell Res; 2017 Oct; 24():128-134. PubMed ID: 28941410 [TBL] [Abstract][Full Text] [Related]
17. Generating Human Organs via Interspecies Chimera Formation: Advances and Barriers. De Los Angeles A; Pho N; Redmond DE Yale J Biol Med; 2018 Sep; 91(3):333-342. PubMed ID: 30258320 [TBL] [Abstract][Full Text] [Related]
18. Toward developing human organs via embryo models and chimeras. Wu J; Fu J Cell; 2024 Jun; 187(13):3194-3219. PubMed ID: 38906095 [TBL] [Abstract][Full Text] [Related]
19. Derivation of Intermediate Pluripotent Stem Cells Amenable to Primordial Germ Cell Specification. Yu L; Wei Y; Sun HX; Mahdi AK; Pinzon Arteaga CA; Sakurai M; Schmitz DA; Zheng C; Ballard ED; Li J; Tanaka N; Kohara A; Okamura D; Mutto AA; Gu Y; Ross PJ; Wu J Cell Stem Cell; 2021 Mar; 28(3):550-567.e12. PubMed ID: 33271070 [TBL] [Abstract][Full Text] [Related]
20. Improving Cell Survival in Injected Embryos Allows Primed Pluripotent Stem Cells to Generate Chimeric Cynomolgus Monkeys. Kang Y; Ai Z; Duan K; Si C; Wang Y; Zheng Y; He J; Yin Y; Zhao S; Niu B; Zhu X; Liu L; Xiang L; Zhang L; Niu Y; Ji W; Li T Cell Rep; 2018 Nov; 25(9):2563-2576.e9. PubMed ID: 30485820 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]