These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 27494697)
1. Transformation of graphene oxide by chlorination and chloramination: Implications for environmental transport and fate. Li Y; Yang N; Du T; Wang X; Chen W Water Res; 2016 Oct; 103():416-423. PubMed ID: 27494697 [TBL] [Abstract][Full Text] [Related]
2. Photochlorination-induced transformation of graphene oxide: Mechanism and environmental fate. Du T; Adeleye AS; Keller AA; Wu Z; Han W; Wang Y; Zhang C; Li Y Water Res; 2017 Nov; 124():372-380. PubMed ID: 28783493 [TBL] [Abstract][Full Text] [Related]
3. Transformation of graphene oxide by ferrous iron: Environmental implications. Wang F; Wang F; Gao G; Chen W Environ Toxicol Chem; 2015 Sep; 34(9):1975-82. PubMed ID: 25939959 [TBL] [Abstract][Full Text] [Related]
4. Formation of organic chloramines during water disinfection: chlorination versus chloramination. Lee W; Westerhoff P Water Res; 2009 May; 43(8):2233-9. PubMed ID: 19269665 [TBL] [Abstract][Full Text] [Related]
5. The formation of halogen-specific TOX from chlorination and chloramination of natural organic matter isolates. Kristiana I; Gallard H; Joll C; Croué JP Water Res; 2009 Sep; 43(17):4177-86. PubMed ID: 19616274 [TBL] [Abstract][Full Text] [Related]
6. Formation of disinfection byproducts upon chlorine dioxide preoxidation followed by chlorination or chloramination of natural organic matter. Yang X; Guo W; Lee W Chemosphere; 2013 Jun; 91(11):1477-85. PubMed ID: 23312737 [TBL] [Abstract][Full Text] [Related]
7. Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter. Ye T; Xu B; Wang Z; Zhang TY; Hu CY; Lin L; Xia SJ; Gao NY Water Res; 2014 Dec; 66():390-398. PubMed ID: 25240119 [TBL] [Abstract][Full Text] [Related]
8. Environmental fate and risk of ultraviolet- and visible-light-transformed graphene oxide: A comparative study. Gao Y; Ren X; Zhang X; Chen C Environ Pollut; 2019 Aug; 251():821-829. PubMed ID: 31125812 [TBL] [Abstract][Full Text] [Related]
9. Factors affecting THMs, HAAs and HNMs formation of Jin Lan Reservoir water exposed to chlorine and monochloramine. Hong H; Xiong Y; Ruan M; Liao F; Lin H; Liang Y Sci Total Environ; 2013 Feb; 444():196-204. PubMed ID: 23271145 [TBL] [Abstract][Full Text] [Related]
10. Role of NOM molecular size on iodo-trihalomethane formation during chlorination and chloramination. Zhang J; Chen DD; Li L; Li WW; Mu Y; Yu HQ Water Res; 2016 Oct; 102():533-541. PubMed ID: 27423047 [TBL] [Abstract][Full Text] [Related]
11. Enhanced dehydrochlorination of 1,1,2,2-tetrachloroethane by graphene-based nanomaterials. Li X; Chen W; Zhang C; Li Y; Wang F; Chen W Environ Pollut; 2016 Jul; 214():341-348. PubMed ID: 27107258 [TBL] [Abstract][Full Text] [Related]
12. Disinfection by-products formation and precursors transformation during chlorination and chloramination of highly-polluted source water: significance of ammonia. Tian C; Liu R; Liu H; Qu J Water Res; 2013 Oct; 47(15):5901-10. PubMed ID: 23911224 [TBL] [Abstract][Full Text] [Related]
13. Comparison of chlorination and chloramination in carbonaceous and nitrogenous disinfection byproduct formation potentials with prolonged contact time. Sakai H; Tokuhara S; Murakami M; Kosaka K; Oguma K; Takizawa S Water Res; 2016 Jan; 88():661-670. PubMed ID: 26575475 [TBL] [Abstract][Full Text] [Related]
14. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter. Kristiana I; Tan J; Joll CA; Heitz A; von Gunten U; Charrois JW Water Res; 2013 Feb; 47(2):535-46. PubMed ID: 23164216 [TBL] [Abstract][Full Text] [Related]
15. (Photo)chlorination-induced physicochemical transformation of aqueous fullerene nC60. Wang C; Shang C; Ni M; Dai J; Jiang F Environ Sci Technol; 2012 Sep; 46(17):9398-405. PubMed ID: 22881987 [TBL] [Abstract][Full Text] [Related]
16. Colloidal properties and stability of graphene oxide nanomaterials in the aquatic environment. Chowdhury I; Duch MC; Mansukhani ND; Hersam MC; Bouchard D Environ Sci Technol; 2013 Jun; 47(12):6288-96. PubMed ID: 23668881 [TBL] [Abstract][Full Text] [Related]
17. Disinfection by-product formation from the chlorination and chloramination of amines. Bond T; Mokhtar Kamal NH; Bonnisseau T; Templeton MR J Hazard Mater; 2014 Aug; 278():288-96. PubMed ID: 24981680 [TBL] [Abstract][Full Text] [Related]
18. Aggregation kinetics of graphene oxides in aqueous solutions: experiments, mechanisms, and modeling. Wu L; Liu L; Gao B; Muñoz-Carpena R; Zhang M; Chen H; Zhou Z; Wang H Langmuir; 2013 Dec; 29(49):15174-81. PubMed ID: 24261814 [TBL] [Abstract][Full Text] [Related]
19. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment. Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286 [TBL] [Abstract][Full Text] [Related]
20. Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry. Ye N; Wang Z; Wang S; Fang H; Wang D Environ Sci Pollut Res Int; 2018 Apr; 25(11):10956-10965. PubMed ID: 29399742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]