These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
148 related articles for article (PubMed ID: 27494697)
21. N-nitrosodimethylamine (NDMA) formation potential of amine-based water treatment polymers: Effects of in situ chloramination, breakpoint chlorination, and pre-oxidation. Park SH; Padhye LP; Wang P; Cho M; Kim JH; Huang CH J Hazard Mater; 2015 Jan; 282():133-40. PubMed ID: 25112551 [TBL] [Abstract][Full Text] [Related]
23. Sunlight affects aggregation and deposition of graphene oxide in the aquatic environment. Chowdhury I; Hou WC; Goodwin D; Henderson M; Zepp RG; Bouchard D Water Res; 2015 Jul; 78():37-46. PubMed ID: 25898251 [TBL] [Abstract][Full Text] [Related]
24. Interaction between Al Liu X; Xu X; Sun J; Duan S; Sun Y; Hayat T; Li J Environ Pollut; 2018 Dec; 243(Pt B):1802-1809. PubMed ID: 30408867 [TBL] [Abstract][Full Text] [Related]
25. High-yield production of highly fluorinated graphene by direct heating fluorination of graphene-oxide. Wang X; Dai Y; Gao J; Huang J; Li B; Fan C; Yang J; Liu X ACS Appl Mater Interfaces; 2013 Sep; 5(17):8294-9. PubMed ID: 23932074 [TBL] [Abstract][Full Text] [Related]
26. Chlorination and chloramination of aminophenols in aqueous solution: oxidant demand and by-product formation. Mehrez OA; Dossier-Berne F; Legube B Environ Technol; 2015; 36(1-4):310-6. PubMed ID: 25514132 [TBL] [Abstract][Full Text] [Related]
27. Effect of physicochemical factors on transport and retention of graphene oxide in saturated media. Chen C; Shang J; Zheng X; Zhao K; Yan C; Sharma P; Liu K Environ Pollut; 2018 May; 236():168-176. PubMed ID: 29414337 [TBL] [Abstract][Full Text] [Related]
28. New insight into the aggregation of graphene oxide in synthetic surface water: Carbonate nanoparticle formation on graphene oxide. Zeng Z; Wang Y; Zhou Q; Yang K; Lin D Environ Pollut; 2019 Jul; 250():366-374. PubMed ID: 31022642 [TBL] [Abstract][Full Text] [Related]
29. Formation and speciation of nine haloacetamides, an emerging class of nitrogenous DBPs, during chlorination or chloramination. Chu W; Gao N; Yin D; Krasner SW J Hazard Mater; 2013 Sep; 260():806-12. PubMed ID: 23856310 [TBL] [Abstract][Full Text] [Related]
30. Graphene-based antibacterial paper. Hu W; Peng C; Luo W; Lv M; Li X; Li D; Huang Q; Fan C ACS Nano; 2010 Jul; 4(7):4317-23. PubMed ID: 20593851 [TBL] [Abstract][Full Text] [Related]
31. Enhanced Performance of Polyurethane Hybrid Membranes for CO2 Separation by Incorporating Graphene Oxide: The Relationship between Membrane Performance and Morphology of Graphene Oxide. Wang T; Zhao L; Shen JN; Wu LG; Van der Bruggen B Environ Sci Technol; 2015 Jul; 49(13):8004-11. PubMed ID: 26024066 [TBL] [Abstract][Full Text] [Related]
32. Effects of sulfide reduction on adsorption affinities of colloidal graphene oxide nanoparticles for phenanthrene and 1-naphthol. Wang F; Wang F; Zhu D; Chen W Environ Pollut; 2015 Jan; 196():371-8. PubMed ID: 25463735 [TBL] [Abstract][Full Text] [Related]
33. Lateral dimension-dependent antibacterial activity of graphene oxide sheets. Liu S; Hu M; Zeng TH; Wu R; Jiang R; Wei J; Wang L; Kong J; Chen Y Langmuir; 2012 Aug; 28(33):12364-72. PubMed ID: 22827339 [TBL] [Abstract][Full Text] [Related]
34. Graphene Oxides in Water: Correlating Morphology and Surface Chemistry with Aggregation Behavior. Jiang Y; Raliya R; Fortner JD; Biswas P Environ Sci Technol; 2016 Jul; 50(13):6964-73. PubMed ID: 27248211 [TBL] [Abstract][Full Text] [Related]
35. Uniform ultrasmall graphene oxide nanosheets with low cytotoxicity and high cellular uptake. Zhang H; Peng C; Yang J; Lv M; Liu R; He D; Fan C; Huang Q ACS Appl Mater Interfaces; 2013 Mar; 5(5):1761-7. PubMed ID: 23402618 [TBL] [Abstract][Full Text] [Related]
36. Role of Oxygen Functionalities in Graphene Oxide Architectural Laminate Subnanometer Spacing and Water Transport. Amadei CA; Montessori A; Kadow JP; Succi S; Vecitis CD Environ Sci Technol; 2017 Apr; 51(8):4280-4288. PubMed ID: 28333448 [TBL] [Abstract][Full Text] [Related]
37. Catalytic reduction of graphene oxide nanosheets by glutathione peroxidase mimetics reveals a new structural motif in graphene oxide. Vernekar AA; Mugesh G Chemistry; 2013 Dec; 19(49):16699-706. PubMed ID: 24281813 [TBL] [Abstract][Full Text] [Related]
38. Fe3O4 magnetic nanoparticles/reduced graphene oxide nanosheets as a novel electrochemical and bioeletrochemical sensing platform. Teymourian H; Salimi A; Khezrian S Biosens Bioelectron; 2013 Nov; 49():1-8. PubMed ID: 23708810 [TBL] [Abstract][Full Text] [Related]
39. Preparation of Janus Graphene Oxide (GO) Nanosheets Based on Electrostatic Assembly of GO Nanosheets and Polystyrene Microspheres. Yang Y; Zhang L; Ji X; Zhang L; Wang H; Zhao H Macromol Rapid Commun; 2016 Sep; 37(18):1520-6. PubMed ID: 27448248 [TBL] [Abstract][Full Text] [Related]
40. Enabling graphene oxide nanosheets as water separation membranes. Hu M; Mi B Environ Sci Technol; 2013 Apr; 47(8):3715-23. PubMed ID: 23488812 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]