BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 27494733)

  • 1. Molecular Genetic Approaches for Environmental Stress Tolerant Crop Plants: Progress and Prospects.
    Kaur R; Kumar Bhunia R; Ghosh AK
    Recent Pat Biotechnol; 2016; 10(1):12-29. PubMed ID: 27494733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular genetic approaches for environmental stress tolerant crop plants: Progress and prospects.
    Kaur R; Ghosh AK; Bhunia RK
    Recent Pat Biotechnol; 2016 Aug; ():. PubMed ID: 27494086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability.
    Mickelbart MV; Hasegawa PM; Bailey-Serres J
    Nat Rev Genet; 2015 Apr; 16(4):237-51. PubMed ID: 25752530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenges and perspectives to improve crop drought and salinity tolerance.
    Cominelli E; Conti L; Tonelli C; Galbiati M
    N Biotechnol; 2013 May; 30(4):355-61. PubMed ID: 23165101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetically modified (GM) crops: milestones and new advances in crop improvement.
    Kamthan A; Chaudhuri A; Kamthan M; Datta A
    Theor Appl Genet; 2016 Sep; 129(9):1639-55. PubMed ID: 27381849
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant abiotic stress tolerance: Insights into resilience build-up.
    Suprasanna P
    J Biosci; 2020; 45():. PubMed ID: 33097677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Abiotic Stress Tolerance in Crop Plants through CRISPR Genome Editing.
    Rahman MU; Zulfiqar S; Raza MA; Ahmad N; Zhang B
    Cells; 2022 Nov; 11(22):. PubMed ID: 36429019
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Narrowing down the targets: towards successful genetic engineering of drought-tolerant crops.
    Yang S; Vanderbeld B; Wan J; Huang Y
    Mol Plant; 2010 May; 3(3):469-90. PubMed ID: 20507936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Targeting metabolic pathways for genetic engineering abiotic stress-tolerance in crops.
    Reguera M; Peleg Z; Blumwald E
    Biochim Biophys Acta; 2012 Feb; 1819(2):186-94. PubMed ID: 21867784
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Achieving crop stress tolerance and improvement--an overview of genomic techniques.
    Rasool S; Ahmad P; Rehman MU; Arif A; Anjum NA
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1395-408. PubMed ID: 26440315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transcription factors as tools to engineer enhanced drought stress tolerance in plants.
    Hussain SS; Kayani MA; Amjad M
    Biotechnol Prog; 2011; 27(2):297-306. PubMed ID: 21302367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inducing drought tolerance in plants: recent advances.
    Ashraf M
    Biotechnol Adv; 2010; 28(1):169-83. PubMed ID: 19914371
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transgenic approaches for abiotic stress tolerance in plants: retrospect and prospects.
    Bhatnagar-Mathur P; Vadez V; Sharma KK
    Plant Cell Rep; 2008 Mar; 27(3):411-24. PubMed ID: 18026957
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genomics approaches for crop improvement against abiotic stress.
    Akpınar BA; Lucas SJ; Budak H
    ScientificWorldJournal; 2013; 2013():361921. PubMed ID: 23844392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic engineering: an efficient approach to mitigating biotic and abiotic stresses in sugarcane cultivation.
    Verma KK; Song XP; Budeguer F; Nikpay A; Enrique R; Singh M; Zhang BQ; Wu JM; Li YR
    Plant Signal Behav; 2022 Dec; 17(1):2108253. PubMed ID: 35959678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetically modified crops: current status and future prospects.
    Kumar K; Gambhir G; Dass A; Tripathi AK; Singh A; Jha AK; Yadava P; Choudhary M; Rakshit S
    Planta; 2020 Mar; 251(4):91. PubMed ID: 32236850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excavating abiotic stress-related gene resources of terrestrial macroscopic cyanobacteria for crop genetic engineering: dawn and challenge.
    Ye S; Gao X
    Bioengineered; 2015; 6(6):313-5. PubMed ID: 26418632
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of metabolomic quantitative trait locus mapping and osmotic adjustment traits for the improvement of crop yields under environmental stresses.
    Abdelrahman M; Burritt DJ; Tran LP
    Semin Cell Dev Biol; 2018 Nov; 83():86-94. PubMed ID: 28668354
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of transgenic plants in agriculture and biopharming.
    Ahmad P; Ashraf M; Younis M; Hu X; Kumar A; Akram NA; Al-Qurainy F
    Biotechnol Adv; 2012; 30(3):524-40. PubMed ID: 21959304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural Genetic Resources from Diverse Plants to Improve Abiotic Stress Tolerance in Plants.
    Yolcu S; Alavilli H; Lee BH
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.