These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

541 related articles for article (PubMed ID: 27494733)

  • 21. Potential utilization of NAC transcription factors to enhance abiotic stress tolerance in plants by biotechnological approach.
    Tran LS; Nishiyama R; Yamaguchi-Shinozaki K; Shinozaki K
    GM Crops; 2010; 1(1):32-9. PubMed ID: 21912210
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hormone balance and abiotic stress tolerance in crop plants.
    Peleg Z; Blumwald E
    Curr Opin Plant Biol; 2011 Jun; 14(3):290-5. PubMed ID: 21377404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Genetic approaches to crop improvement: responding to environmental and population changes.
    Takeda S; Matsuoka M
    Nat Rev Genet; 2008 Jun; 9(6):444-57. PubMed ID: 18475268
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Next biotech plants: new traits, crops, developers and technologies for addressing global challenges.
    Ricroch AE; Hénard-Damave MC
    Crit Rev Biotechnol; 2016 Aug; 36(4):675-90. PubMed ID: 25641327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transgenic crops coping with water scarcity.
    Cominelli E; Tonelli C
    N Biotechnol; 2010 Nov; 27(5):473-7. PubMed ID: 20723623
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genetic analysis of abiotic stress tolerance in crops.
    Roy SJ; Tucker EJ; Tester M
    Curr Opin Plant Biol; 2011 Jun; 14(3):232-9. PubMed ID: 21478049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Genetic engineering of crops: a ray of hope for enhanced food security.
    Gill SS; Gill R; Tuteja R; Tuteja N
    Plant Signal Behav; 2014; 9(3):e28545. PubMed ID: 24686131
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetically modified crops for biomass increase. Genes and strategies.
    Rojas CA; Hemerly AS; Ferreira PC
    GM Crops; 2010; 1(3):137-42. PubMed ID: 21865869
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Redox Strategies for Crop Improvement.
    Kerchev P; De Smet B; Waszczak C; Messens J; Van Breusegem F
    Antioxid Redox Signal; 2015 Nov; 23(14):1186-205. PubMed ID: 26062101
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integrated genomics and molecular breeding approaches for dissecting the complex quantitative traits in crop plants.
    Kujur A; Saxena MS; Bajaj D; Laxmi ; Parida SK
    J Biosci; 2013 Dec; 38(5):971-87. PubMed ID: 24296899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploiting the full potential of disease-resistance genes for agricultural use.
    Rommens CM; Kishore GM
    Curr Opin Biotechnol; 2000 Apr; 11(2):120-5. PubMed ID: 10753764
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genetic engineering for increasing fungal and bacterial disease resistance in crop plants.
    Wally O; Punja ZK
    GM Crops; 2010; 1(4):199-206. PubMed ID: 21844674
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-value pleiotropic genes for developing multiple stress-tolerant biofortified crops for 21st-century challenges.
    Husaini AM
    Heredity (Edinb); 2022 Jun; 128(6):460-472. PubMed ID: 35173311
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genetic engineering of cytokinin metabolism: prospective way to improve agricultural traits of crop plants.
    Zalabák D; Pospíšilová H; Šmehilová M; Mrízová K; Frébort I; Galuszka P
    Biotechnol Adv; 2013; 31(1):97-117. PubMed ID: 22198203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic and molecular exploration of maize environmental stress resilience: Toward sustainable agriculture.
    Yang Z; Cao Y; Shi Y; Qin F; Jiang C; Yang S
    Mol Plant; 2023 Oct; 16(10):1496-1517. PubMed ID: 37464740
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Agricultural biotechnology for crop improvement in a variable climate: hope or hype?
    Varshney RK; Bansal KC; Aggarwal PK; Datta SK; Craufurd PQ
    Trends Plant Sci; 2011 Jul; 16(7):363-71. PubMed ID: 21497543
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic control of plasticity of oil yield for combined abiotic stresses using a joint approach of crop modelling and genome-wide association.
    Mangin B; Casadebaig P; Cadic E; Blanchet N; Boniface MC; Carrère S; Gouzy J; Legrand L; Mayjonade B; Pouilly N; André T; Coque M; Piquemal J; Laporte M; Vincourt P; Muños S; Langlade NB
    Plant Cell Environ; 2017 Oct; 40(10):2276-2291. PubMed ID: 28418069
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering Climate-Change-Resilient Crops: New Tools and Approaches.
    Shahinnia F; Carrillo N; Hajirezaei MR
    Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genetic engineering for modern agriculture: challenges and perspectives.
    Mittler R; Blumwald E
    Annu Rev Plant Biol; 2010; 61():443-62. PubMed ID: 20192746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.