These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 27496801)

  • 1. The role of adaptive bone formation in the etiology of stress fracture.
    Hughes JM; Popp KL; Yanovich R; Bouxsein ML; Matheny RW
    Exp Biol Med (Maywood); 2017 May; 242(9):897-906. PubMed ID: 27496801
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emerging evidence that adaptive bone formation inhibition by non-steroidal anti-inflammatory drugs increases stress fracture risk.
    Staab JS; Kolb AL; Tomlinson RE; Pajevic PD; Matheny RW; Hughes JM
    Exp Biol Med (Maywood); 2021 May; 246(9):1104-1111. PubMed ID: 33641442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical model for repair of fatigue damage and stress fracture in osteonal bone.
    Martin B
    J Orthop Res; 1995 May; 13(3):309-16. PubMed ID: 7602391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Promoting adaptive bone formation to prevent stress fractures in military personnel.
    Hughes JM; O'Leary TJ; Koltun KJ; Greeves JP
    Eur J Sport Sci; 2022 Jan; 22(1):4-15. PubMed ID: 34269162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unraveling the physiologic paradoxes that underlie exercise prescription for stress fracture prevention.
    Guerriere KI; Castellani CM; Popp KL; Bouxsein ML; Hughes JM
    Exp Biol Med (Maywood); 2022 Oct; 247(20):1833-1839. PubMed ID: 35983839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Models for the pathogenesis of stress fractures in athletes.
    Bennell KL; Malcolm SA; Wark JD; Brukner PD
    Br J Sports Med; 1996 Sep; 30(3):200-4. PubMed ID: 8889110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractures--a preventable hazard of racing thoroughbreds?
    Riggs CM
    Vet J; 2002 Jan; 163(1):19-29. PubMed ID: 11749133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Naproxen impairs load-induced bone formation, reduces bone toughness, and diminishes woven bone formation following stress fracture in mice.
    Park J; Fertala A; Tomlinson RE
    Bone; 2019 Jul; 124():22-32. PubMed ID: 30998998
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stress fracture healing: fatigue loading of the rat ulna induces upregulation in expression of osteogenic and angiogenic genes that mimic the intramembranous portion of fracture repair.
    Wohl GR; Towler DA; Silva MJ
    Bone; 2009 Feb; 44(2):320-30. PubMed ID: 18950737
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive fatigue fracture model of the rat ulna.
    Tami AE; Nasser P; Schaffler MB; Knothe Tate ML
    J Orthop Res; 2003 Nov; 21(6):1018-24. PubMed ID: 14554214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding the etiology of the posteromedial tibial stress fracture.
    Milgrom C; Burr DB; Finestone AS; Voloshin A
    Bone; 2015 Sep; 78():11-4. PubMed ID: 25933941
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Fatigue fractures of the foot].
    Marcelli C
    Rev Prat; 1997 Jan; 47(1):50-5. PubMed ID: 9035543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo fatigue loading of the rat ulna induces both bone formation and resorption and leads to time-related changes in bone mechanical properties and density.
    Hsieh YF; Silva MJ
    J Orthop Res; 2002 Jul; 20(4):764-71. PubMed ID: 12168665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature.
    Shimal A; Davies AM; James SL; Grimer RJ
    Clin Radiol; 2010 May; 65(5):382-6. PubMed ID: 20380937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bisphosphonate treatment delays stress fracture remodeling in the rat ulna.
    Kidd LJ; Cowling NR; Wu AC; Kelly WL; Forwood MR
    J Orthop Res; 2011 Dec; 29(12):1827-33. PubMed ID: 21598308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skeletal self-repair: stress fracture healing by rapid formation and densification of woven bone.
    Uthgenannt BA; Kramer MH; Hwu JA; Wopenka B; Silva MJ
    J Bone Miner Res; 2007 Oct; 22(10):1548-56. PubMed ID: 17576168
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Fatigue damage and repair in bone].
    Zhang C; Wu D; Guo Y; Guo T; Zhu X
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2003 Mar; 20(1):180-6. PubMed ID: 12744194
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone formation after damaging in vivo fatigue loading results in recovery of whole-bone monotonic strength and increased fatigue life.
    Silva MJ; Touhey DC
    J Orthop Res; 2007 Feb; 25(2):252-61. PubMed ID: 17106875
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Third metacarpal condylar fatigue fractures in equine athletes occur within previously modelled subchondral bone.
    Whitton RC; Trope GD; Ghasem-Zadeh A; Anderson GA; Parkin TD; Mackie EJ; Seeman E
    Bone; 2010 Oct; 47(4):826-31. PubMed ID: 20659599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microdamage and bone mechanobiology.
    Lee TC; O'Brien FJ; Gunnlaugsson T; Parkesh R; Taylor D
    Technol Health Care; 2006; 14(4-5):359-65. PubMed ID: 17065757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.