BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27497129)

  • 1. Postharvest Control of Botrytis cinerea and Monilinia fructigena in Apples by Gamma Irradiation Combined with Fumigation.
    Cheon W; Kim YS; Balaraju K; Kim BS; Lee BH; Jeon Y
    J Food Prot; 2016 Aug; 79(8):1410-7. PubMed ID: 27497129
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Postharvest Disease Control of
    Cheon W; Kim YS; Balaraju K; Kim BS; Lee BH; Jeon Y
    Plant Pathol J; 2016 Oct; 32(5):460-468. PubMed ID: 27721696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of conidia of Botrytis cinerea and Monilinia fructigena using UV-C and heat treatment.
    Marquenie D; Lammertyn J; Geeraerd AH; Soontjens C; Van Impe JF; Nicolaï BM; Michiels CW
    Int J Food Microbiol; 2002 Mar; 74(1-2):27-35. PubMed ID: 11930952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antifungal activity of volatile organic compounds from essential oils against the postharvest pathogens
    Álvarez-García S; Moumni M; Romanazzi G
    Front Plant Sci; 2023; 14():1274770. PubMed ID: 37860258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cold atmospheric plasma fumigation suppresses postharvest apple Botrytis cinerea by triggering intracellular reactive oxygen species and mitochondrial calcium.
    Cao J; Fang Q; Han C; Zhong C
    Int J Food Microbiol; 2023 Dec; 407():110397. PubMed ID: 37716308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo [corrected] activity of eugenol oil (Eugenia caryophylata) against four important postharvest apple pathogens.
    Amiri A; Dugas R; Pichot AL; Bompeix G
    Int J Food Microbiol; 2008 Aug; 126(1-2):13-9. PubMed ID: 18554737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combinations of pulsed white light and UV-C or mild heat treatment to inactivate conidia of Botrytis cinerea and Monilia fructigena.
    Marquenie D; Geeraerd AH; Lammertyn J; Soontjens C; Van Impe JF; Michiels CW; Nicolaï BM
    Int J Food Microbiol; 2003 Aug; 85(1-2):185-96. PubMed ID: 12810282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biocontrol activity of an alkaline serine protease from Aureobasidium pullulans expressed in Pichia pastoris against four postharvest pathogens on apple.
    Banani H; Spadaro D; Zhang D; Matic S; Garibaldi A; Gullino ML
    Int J Food Microbiol; 2014 Jul; 182-183():1-8. PubMed ID: 24854386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of ozone treatment on Botrytis cinerea and Sclerotinia sclerotiorum in relation to horticultural product quality.
    Sharpe D; Fan L; McRae K; Walker B; MacKay R; Doucette C
    J Food Sci; 2009 Aug; 74(6):M250-7. PubMed ID: 19723209
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifungal effects of lycorine on Botrytis cinerea and possible mechanisms.
    Zhao S; Guo Y; Wang Q; An B
    Biotechnol Lett; 2021 Jul; 43(7):1503-1512. PubMed ID: 33856593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Postharvest Fungicide-Resistant Botrytis cinerea Isolates From Commercially Stored Apple Fruit.
    Jurick WM; Macarisin O; Gaskins VL; Park E; Yu J; Janisiewicz W; Peter KA
    Phytopathology; 2017 Mar; 107(3):362-368. PubMed ID: 27841961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of Ionizing Radiation on Postharvest Fungal Pathogens.
    Jeong RD; Shin EJ; Chu EH; Park HJ
    Plant Pathol J; 2015 Jun; 31(2):176-80. PubMed ID: 26060436
    [TBL] [Abstract][Full Text] [Related]  

  • 13. (E)-2-hexenal fumigation control the gray mold on fruits via consuming glutathione of Botrytis cinerea.
    Zhang X; Li D; Luo Z; Xu Y
    Food Chem; 2024 Jan; 432():137146. PubMed ID: 37639888
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hanseniaspora uvarum prolongs shelf life of strawberry via volatile production.
    Qin X; Xiao H; Cheng X; Zhou H; Si L
    Food Microbiol; 2017 May; 63():205-212. PubMed ID: 28040170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological control of postharvest spoilage caused by Penicillium expansum and Botrytis cinerea in apple by using the bacterium Rahnella aquatilis.
    Calvo J; Calvente V; de Orellano ME; Benuzzi D; Sanz de Tosetti MI
    Int J Food Microbiol; 2007 Feb; 113(3):251-7. PubMed ID: 17007950
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biocontrol Effect and Possible Mechanism of Food-Borne Sulfide 3-Methylthio-1-Propanol Against
    Feng S; Lu W; Jian Y; Chen Y; Meng R; Deng J; Liu Q; Yu T; Jin L; Yang X; Li Z; Jian W
    Front Plant Sci; 2021; 12():763755. PubMed ID: 34970281
    [No Abstract]   [Full Text] [Related]  

  • 17. De novo assembly and comparative transcriptome analysis of Monilinia fructicola, Monilinia laxa and Monilinia fructigena, the causal agents of brown rot on stone fruits.
    De Miccolis Angelini RM; Abate D; Rotolo C; Gerin D; Pollastro S; Faretra F
    BMC Genomics; 2018 Jun; 19(1):436. PubMed ID: 29866047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the radiation effects on Brown Rot disease of Golden Delicious apples, inoculated with the fungus Monilinia fructigena.
    Marcaki P
    Mycopathologia; 1998; 142(1):33-6. PubMed ID: 16284856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Essential oils from Algerian species of Mentha as new bio-control agents against phytopathogen strains.
    Benomari FZ; Andreu V; Kotarba J; Dib MEA; Bertrand C; Muselli A; Costa J; Djabou N
    Environ Sci Pollut Res Int; 2018 Oct; 25(30):29889-29900. PubMed ID: 28866759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.