These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2749733)

  • 1. In vivo murine studies on the biochemical mechanism of naphthalene cataractogenesis.
    Wells PG; Wilson B; Lubek BM
    Toxicol Appl Pharmacol; 1989 Jul; 99(3):466-73. PubMed ID: 2749733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo murine studies on the biochemical mechanism of acetaminophen cataractogenicity.
    Wells PG; Wilson B; Winn LM; Lubek BM
    Can J Physiol Pharmacol; 1995 Aug; 73(8):1123-9. PubMed ID: 8564879
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic evidence for the involvement of enzymatic bioactivation in the cataractogenicity of acetaminophen in genetically susceptible (C57BL/6) and resistant (DBA/2) murine strains.
    Lubek BM; Basu PK; Wells PG
    Toxicol Appl Pharmacol; 1988 Jul; 94(3):487-95. PubMed ID: 3400097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cataractogenicity and bioactivation of naphthalene derivatives in lens culture and in vivo.
    Lubek BM; Kubow S; Basu PK; Wells PG
    Lens Eye Toxic Res; 1989; 6(1-2):203-9. PubMed ID: 2562167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 1,2-naphthoquinone stimulates lipid peroxidation and cholesterol domain formation in model membranes.
    Jacob RF; Aleo MD; Self-Medlin Y; Doshna CM; Mason RP
    Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7189-97. PubMed ID: 24130176
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pharmacological studies on the in vivo cataractogenicity of acetaminophen in mice and rabbits.
    Lubek BM; Avaria M; Basu PK; Wells PG
    Fundam Appl Toxicol; 1988 May; 10(4):596-606. PubMed ID: 3396787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of phenytoin teratogenicity and embryonic covalent binding by acetylsalicylic acid, caffeic acid, and alpha-phenyl-N-t-butylnitrone: implications for bioactivation by prostaglandin synthetase.
    Wells PG; Zubovits JT; Wong ST; Molinari LM; Ali S
    Toxicol Appl Pharmacol; 1989 Feb; 97(2):192-202. PubMed ID: 2493687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An investigation of the formation of cytotoxic, genotoxic, protein-reactive and stable metabolites from naphthalene by human liver microsomes.
    Tingle MD; Pirmohamed M; Templeton E; Wilson AS; Madden S; Kitteringham NR; Park BK
    Biochem Pharmacol; 1993 Nov; 46(9):1529-38. PubMed ID: 8240407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunochemical method to detect proteins that undergo selective modification by 1,2-naphthoquinone derived from naphthalene through metabolic activation.
    Miura T; Kumagai Y
    J Toxicol Sci; 2010 Dec; 35(6):843-52. PubMed ID: 21139334
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Relationship of cytochrome P450 activity to Clara cell cytotoxicity. IV. Metabolism of naphthalene and naphthalene oxide in microdissected airways from mice, rats, and hamsters.
    Buckpitt A; Chang AM; Weir A; Van Winkle L; Duan X; Philpot R; Plopper C
    Mol Pharmacol; 1995 Jan; 47(1):74-81. PubMed ID: 7838135
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro metabolism of naphthalene by human liver microsomal cytochrome P450 enzymes.
    Cho TM; Rose RL; Hodgson E
    Drug Metab Dispos; 2006 Jan; 34(1):176-83. PubMed ID: 16243959
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of epoxide and quinone protein adducts in B6C3F1 mice treated with naphthalene, sulfate conjugate of 1,4-dihydroxynaphthalene and 1,4-naphthoquinone.
    Tsuruda LS; Lamé MW; Jones AD
    Arch Toxicol; 1995; 69(6):362-7. PubMed ID: 7495373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanism of oxidative DNA damage induced by metabolites of carcinogenic naphthalene.
    Ohnishi S; Hiraku Y; Hasegawa K; Hirakawa K; Oikawa S; Murata M; Kawanishi S
    Mutat Res Genet Toxicol Environ Mutagen; 2018 Mar; 827():42-49. PubMed ID: 29502736
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Formation of depurinating N3adenine and N7guanine adducts after reaction of 1,2-naphthoquinone or enzyme-activated 1,2-dihydroxynaphthalene with DNA. Implications for the mechanism of tumor initiation by naphthalene.
    Saeed M; Higginbotham S; Rogan E; Cavalieri E
    Chem Biol Interact; 2007 Feb; 165(3):175-88. PubMed ID: 17224140
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the arachidonic acid and NADPH-dependent microsomal metabolism of naphthalene and 2-methylnaphthalene and the effect of indomethacin on the bronchiolar necrosis.
    Buckpitt AR; Bahnson LS; Franklin RB
    Biochem Pharmacol; 1986 Feb; 35(4):645-50. PubMed ID: 3081009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prevention of acetaminophen- and naphthalene-induced cataract and glutathione loss by CySSME.
    Rathbun WB; Holleschau AM; Cohen JF; Nagasawa HT
    Invest Ophthalmol Vis Sci; 1996 Apr; 37(5):923-9. PubMed ID: 8603877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disparity in the induction of glutathione depletion, ROS formation, poly(ADP-ribose) polymerase-1 activation, and apoptosis by quinonoid derivatives of naphthalene in human cultured cells.
    Lin CH; Huang CC; Wang TW; Wang YJ; Lin PH
    Chem Biol Interact; 2007 Feb; 165(3):200-10. PubMed ID: 17224139
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism and cytotoxicity of naphthalene and its metabolites in isolated murine Clara cells.
    Chichester CH; Buckpitt AR; Chang A; Plopper CG
    Mol Pharmacol; 1994 Apr; 45(4):664-72. PubMed ID: 8183245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Naphthoquinone-Induced cataract in mice: possible involvement of Ca2+ release and calpain activation.
    Qian W; Shichi H
    J Ocul Pharmacol Ther; 2001 Aug; 17(4):383-92. PubMed ID: 11572469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depurinating naphthalene-DNA adducts in mouse skin related to cancer initiation.
    Saeed M; Higginbotham S; Gaikwad N; Chakravarti D; Rogan E; Cavalieri E
    Free Radic Biol Med; 2009 Oct; 47(7):1075-81. PubMed ID: 19619639
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.