These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
248 related articles for article (PubMed ID: 27497460)
1. Variability of hemodynamic parameters using the common viscosity assumption in a computational fluid dynamics analysis of intracranial aneurysms. Suzuki T; Takao H; Suzuki T; Suzuki T; Masuda S; Dahmani C; Watanabe M; Mamori H; Ishibashi T; Yamamoto H; Yamamoto M; Murayama Y Technol Health Care; 2017; 25(1):37-47. PubMed ID: 27497460 [TBL] [Abstract][Full Text] [Related]
2. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk. Xiang J; Tremmel M; Kolega J; Levy EI; Natarajan SK; Meng H J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529 [TBL] [Abstract][Full Text] [Related]
3. Experimental and CFD flow studies in an intracranial aneurysm model with Newtonian and non-Newtonian fluids. Frolov SV; Sindeev SV; Liepsch D; Balasso A Technol Health Care; 2016 May; 24(3):317-33. PubMed ID: 26835725 [TBL] [Abstract][Full Text] [Related]
4. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs. Hippelheuser JE; Lauric A; Cohen AD; Malek AM J Biomech; 2014 Nov; 47(15):3695-703. PubMed ID: 25446269 [TBL] [Abstract][Full Text] [Related]
5. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms. Morales HG; Larrabide I; Geers AJ; Aguilar ML; Frangi AF J Biomech; 2013 Sep; 46(13):2158-64. PubMed ID: 23891312 [TBL] [Abstract][Full Text] [Related]
6. Non-Newtonian Blood Modeling in Intracranial Aneurysm Hemodynamics: Impact on the Wall Shear Stress and Oscillatory Shear Index Metrics for Ruptured and Unruptured Cases. Oliveira IL; Santos GB; Gasche JL; Militzer J; Baccin CE J Biomech Eng; 2021 Jul; 143(7):. PubMed ID: 33729441 [TBL] [Abstract][Full Text] [Related]
7. Computational fluid dynamics simulations of cerebral aneurysm using Newtonian, power-law and quasi-mechanistic blood viscosity models. Saqr KM Proc Inst Mech Eng H; 2020 Jul; 234(7):711-719. PubMed ID: 32423286 [TBL] [Abstract][Full Text] [Related]
8. Accounting for residence-time in blood rheology models: do we really need non-Newtonian blood flow modelling in large arteries? Arzani A J R Soc Interface; 2018 Sep; 15(146):. PubMed ID: 30257924 [TBL] [Abstract][Full Text] [Related]
9. Numerical investigation of different viscosity models on pulsatile blood flow of thoracic aortic aneurysm (TAA) in a patient-specific model. Faraji A; Sahebi M; SalavatiDezfouli S Comput Methods Biomech Biomed Engin; 2023 Jun; 26(8):986-998. PubMed ID: 35882063 [TBL] [Abstract][Full Text] [Related]
10. A study of wall shear stress in 12 aneurysms with respect to different viscosity models and flow conditions. Evju Ø; Valen-Sendstad K; Mardal KA J Biomech; 2013 Nov; 46(16):2802-8. PubMed ID: 24099744 [TBL] [Abstract][Full Text] [Related]
12. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis. Omodaka S; Sugiyama S; Inoue T; Funamoto K; Fujimura M; Shimizu H; Hayase T; Takahashi A; Tominaga T Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244 [TBL] [Abstract][Full Text] [Related]
13. Influence of blood viscosity models and boundary conditions on the computation of hemodynamic parameters in cerebral aneurysms using computational fluid dynamics. Yang H; Hong I; Kim YB; Cho KC; Oh JH Acta Neurochir (Wien); 2023 Feb; 165(2):471-482. PubMed ID: 36624234 [TBL] [Abstract][Full Text] [Related]
14. Shear-thinning effects of hemodynamics in patient-specific cerebral aneurysms. Gambaruto A; Janela J; Moura A; Sequeira A Math Biosci Eng; 2013 Jun; 10(3):649-65. PubMed ID: 23906142 [TBL] [Abstract][Full Text] [Related]
15. The importance of blood rheology in patient-specific computational fluid dynamics simulation of stenotic carotid arteries. Mendieta JB; Fontanarosa D; Wang J; Paritala PK; McGahan T; Lloyd T; Li Z Biomech Model Mechanobiol; 2020 Oct; 19(5):1477-1490. PubMed ID: 31894438 [TBL] [Abstract][Full Text] [Related]
16. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models. Castro MA; Ahumada Olivares MC; Putman CM; Cebral JR Med Biol Eng Comput; 2014 Oct; 52(10):827-39. PubMed ID: 25154981 [TBL] [Abstract][Full Text] [Related]
17. What does computational fluid dynamics tell us about intracranial aneurysms? A meta-analysis and critical review. Saqr KM; Rashad S; Tupin S; Niizuma K; Hassan T; Tominaga T; Ohta M J Cereb Blood Flow Metab; 2020 May; 40(5):1021-1039. PubMed ID: 31213162 [TBL] [Abstract][Full Text] [Related]
18. The Numerical Study of the Hemodynamic Characteristics in the Patient-Specific Intracranial Aneurysms before and after Surgery. Byun JS; Choi SY; Seo T Comput Math Methods Med; 2016; 2016():4384508. PubMed ID: 27274764 [TBL] [Abstract][Full Text] [Related]
19. Non-Newtonian versus numerical rheology: Practical impact of shear-thinning on the prediction of stable and unstable flows in intracranial aneurysms. Khan MO; Steinman DA; Valen-Sendstad K Int J Numer Method Biomed Eng; 2017 Jul; 33(7):. PubMed ID: 27696717 [TBL] [Abstract][Full Text] [Related]
20. Computational fluid dynamics in abdominal aorta bifurcation: non-Newtonian versus Newtonian blood flow in a real case study. Soares AA; Gonzaga S; Oliveira C; Simões A; Rouboa AI Comput Methods Biomech Biomed Engin; 2017 Jun; 20(8):822-831. PubMed ID: 28367643 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]