These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27497576)

  • 1. Designing convex repulsive pair potentials that favor assembly of kagome and snub square lattices.
    Piñeros WD; Baldea M; Truskett TM
    J Chem Phys; 2016 Aug; 145(5):054901. PubMed ID: 27497576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Designing pairwise interactions that stabilize open crystals: Truncated square and truncated hexagonal lattices.
    Piñeros WD; Truskett TM
    J Chem Phys; 2017 Apr; 146(14):144501. PubMed ID: 28411598
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designing isotropic interactions for self-assembly of complex lattices.
    Edlund E; Lindgren O; Jacobi MN
    Phys Rev Lett; 2011 Aug; 107(8):085503. PubMed ID: 21929174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Breadth versus depth: Interactions that stabilize particle assemblies to changes in density or temperature.
    Piñeros WD; Baldea M; Truskett TM
    J Chem Phys; 2016 Feb; 144(8):084502. PubMed ID: 26931707
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the limitations of isotropic pair potentials to produce ground-state structural extremes via inverse statistical mechanics.
    Zhang G; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Oct; 88(4):042309. PubMed ID: 24229174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inverse design of triblock Janus spheres for self-assembly of complex structures in the crystallization slot
    Rivera-Rivera LY; Moore TC; Glotzer SC
    Soft Matter; 2023 Apr; 19(15):2726-2736. PubMed ID: 36974942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-energy functional method for inverse problem of self assembly.
    Torikai M
    J Chem Phys; 2015 Apr; 142(14):144102. PubMed ID: 25877557
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sequential phase transitions and transient structured fluctuations in two-dimensional systems with a high-density Kagome lattice phase.
    Nowack L; Rice SA
    J Chem Phys; 2019 Dec; 151(24):244504. PubMed ID: 31893885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-assembly of kagome lattices, entangled webs and linear fibers with vibrating patchy particles in two dimensions.
    Chapela GA; Guzmán O; Martínez-González JA; Díaz-Leyva P; Quintana-H J
    Soft Matter; 2014 Dec; 10(45):9167-76. PubMed ID: 25319927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unusual ground states via monotonic convex pair potentials.
    Marcotte É; Stillinger FH; Torquato S
    J Chem Phys; 2011 Apr; 134(16):164105. PubMed ID: 21528948
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-assembly of the simple cubic lattice with an isotropic potential.
    Rechtsman MC; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021404. PubMed ID: 17025422
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthetic diamond and wurtzite structures self-assemble with isotropic pair interactions.
    Rechtsman MC; Stillinger FH; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031403. PubMed ID: 17500697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Communication: Phase behavior of materials with isotropic interactions designed by inverse strategies to favor diamond and simple cubic lattice ground states.
    Jain A; Errington JR; Truskett TM
    J Chem Phys; 2013 Oct; 139(14):141102. PubMed ID: 24116595
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Designed interaction potentials via inverse methods for self-assembly.
    Rechtsman M; Stillinger F; Torquato S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jan; 73(1 Pt 1):011406. PubMed ID: 16486139
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Designing artificial two dimensional electron lattice on metal surface: a Kagome-like lattice as an example.
    Li S; Qiu WX; Gao JH
    Nanoscale; 2016 Jul; 8(25):12747-54. PubMed ID: 27279292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kagome lattice made by impenetrable ellipses with attractive walls.
    Baumketner A; Melnyk R
    Soft Matter; 2022 May; 18(19):3801-3814. PubMed ID: 35522892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exotic Vortex Lattices in Binary Repulsive Superfluids.
    Mingarelli L; Barnett R
    Phys Rev Lett; 2019 Feb; 122(4):045301. PubMed ID: 30768330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficiency of various lattices from hard ball to soft ball: theoretical study of thermodynamic properties of dendrimer liquid crystal from atomistic simulation.
    Li Y; Lin ST; Goddard WA
    J Am Chem Soc; 2004 Feb; 126(6):1872-85. PubMed ID: 14871120
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Non-additive simple potentials for pre-programmed self-assembly.
    Salgado-Blanco D; Mendoza CI
    Soft Matter; 2015 Feb; 11(5):889-97. PubMed ID: 25489904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Half-metallicity of a kagome spin lattice: the case of a manganese bis-dithiolene monolayer.
    Zhao M; Wang A; Zhang X
    Nanoscale; 2013 Nov; 5(21):10404-8. PubMed ID: 24056709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.