These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
208 related articles for article (PubMed ID: 27497598)
1. Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes. Mathers KE; McFarlane SV; Zhao L; Staples JF J Comp Physiol B; 2017 Jan; 187(1):227-234. PubMed ID: 27497598 [TBL] [Abstract][Full Text] [Related]
2. Differential posttranslational modification of mitochondrial enzymes corresponds with metabolic suppression during hibernation. Mathers KE; Staples JF Am J Physiol Regul Integr Comp Physiol; 2019 Aug; 317(2):R262-R269. PubMed ID: 31067076 [TBL] [Abstract][Full Text] [Related]
3. Are long chain acyl CoAs responsible for suppression of mitochondrial metabolism in hibernating 13-lined ground squirrels? Cooper AN; Brown JC; Staples JF Comp Biochem Physiol B Biochem Mol Biol; 2014 Apr; 170():50-7. PubMed ID: 24561259 [TBL] [Abstract][Full Text] [Related]
4. Reversible temperature-dependent differences in brown adipose tissue respiration during torpor in a mammalian hibernator. McFarlane SV; Mathers KE; Staples JF Am J Physiol Regul Integr Comp Physiol; 2017 Mar; 312(3):R434-R442. PubMed ID: 28077390 [TBL] [Abstract][Full Text] [Related]
10. Mitochondrial respiration and succinate dehydrogenase are suppressed early during entrance into a hibernation bout, but membrane remodeling is only transient. Chung D; Lloyd GP; Thomas RH; Guglielmo CG; Staples JF J Comp Physiol B; 2011 Jul; 181(5):699-711. PubMed ID: 21207037 [TBL] [Abstract][Full Text] [Related]
12. The role of succinate dehydrogenase and oxaloacetate in metabolic suppression during hibernation and arousal. Armstrong C; Staples JF J Comp Physiol B; 2010 Jun; 180(5):775-83. PubMed ID: 20112024 [TBL] [Abstract][Full Text] [Related]
13. Mitochondrial metabolism in hibernation: metabolic suppression, temperature effects, and substrate preferences. Muleme HM; Walpole AC; Staples JF Physiol Biochem Zool; 2006; 79(3):474-83. PubMed ID: 16691514 [TBL] [Abstract][Full Text] [Related]
14. Changes in the mitochondrial phosphoproteome during mammalian hibernation. Chung DJ; Szyszka B; Brown JC; Hüner NP; Staples JF Physiol Genomics; 2013 May; 45(10):389-99. PubMed ID: 23572536 [TBL] [Abstract][Full Text] [Related]
15. Reversible depression of oxygen consumption in isolated liver mitochondria during hibernation. Martin SL; Maniero GD; Carey C; Hand SC Physiol Biochem Zool; 1999; 72(3):255-64. PubMed ID: 10222320 [TBL] [Abstract][Full Text] [Related]
16. Remodeling mitochondrial membranes during arousal from hibernation. Armstrong C; Thomas RH; Price ER; Guglielmo CG; Staples JF Physiol Biochem Zool; 2011; 84(4):438-49. PubMed ID: 21743257 [TBL] [Abstract][Full Text] [Related]
17. Hibernation is super complex: distribution, dynamics, and stability of electron transport system supercomplexes in Hutchinson AJ; Duffy BM; Staples JF Am J Physiol Regul Integr Comp Physiol; 2022 Jul; 323(1):R28-R42. PubMed ID: 35470710 [TBL] [Abstract][Full Text] [Related]
18. Seasonal changes in brown adipose tissue mitochondria in a mammalian hibernator: from gene expression to function. Ballinger MA; Hess C; Napolitano MW; Bjork JA; Andrews MT Am J Physiol Regul Integr Comp Physiol; 2016 Aug; 311(2):R325-36. PubMed ID: 27225952 [TBL] [Abstract][Full Text] [Related]
19. Analysis of microRNA expression during the torpor-arousal cycle of a mammalian hibernator, the 13-lined ground squirrel. Wu CW; Biggar KK; Luu BE; Szereszewski KE; Storey KB Physiol Genomics; 2016 Jun; 48(6):388-96. PubMed ID: 27084747 [TBL] [Abstract][Full Text] [Related]
20. Hibernation induces oxidative stress and activation of NK-kappaB in ground squirrel intestine. Carey HV; Frank CL; Seifert JP J Comp Physiol B; 2000 Nov; 170(7):551-9. PubMed ID: 11128446 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]