BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 27497662)

  • 1. Increased cryosurvival of osteosarcoma cells using an amphipathic pH-responsive polymer for trehalose uptake.
    Mercado SA; Slater NK
    Cryobiology; 2016 Oct; 73(2):175-80. PubMed ID: 27497662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphipathic polymer-mediated uptake of trehalose for dimethyl sulfoxide-free human cell cryopreservation.
    Sharp DM; Picken A; Morris TJ; Hewitt CJ; Coopman K; Slater NK
    Cryobiology; 2013 Dec; 67(3):305-11. PubMed ID: 24045066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of intracellular trehalose concentration and pre-freeze cell volume on the cryosurvival of rapidly frozen human erythrocytes.
    Lynch AL; Slater NK
    Cryobiology; 2011 Aug; 63(1):26-31. PubMed ID: 21530502
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining endocytic and freezing-induced trehalose uptake for cryopreservation of mammalian cells.
    Zhang M; Oldenhof H; Sieme H; Wolkers WF
    Biotechnol Prog; 2017 Jan; 33(1):229-235. PubMed ID: 27802564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Apatite nanoparticles mediate intracellular delivery of trehalose and increase survival of cryopreserved cells.
    Wang B; Liu G; Balamurugan V; Sui Y; Wang G; Song Y; Chang Q
    Cryobiology; 2019 Feb; 86():103-110. PubMed ID: 30458174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The intracellular fate of an amphipathic pH-responsive polymer: Key characteristics towards drug delivery.
    Mercado SA; Orellana-Tavra C; Chen A; Slater NK
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():1051-7. PubMed ID: 27612802
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Membrane stabilization
    Niu Q; Gao S; Liu X; Chong J; Ren L; Zhu K; Shi W; Yuan X
    J Mater Chem B; 2022 Aug; 10(31):6038-6048. PubMed ID: 35894777
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Apatite nanoparticles strongly improve red blood cell cryopreservation by mediating trehalose delivery via enhanced membrane permeation.
    Stefanic M; Ward K; Tawfik H; Seemann R; Baulin V; Guo Y; Fleury JB; Drouet C
    Biomaterials; 2017 Sep; 140():138-149. PubMed ID: 28649014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular sugars improve survival of human red blood cells cryopreserved at -80 degrees C in the presence of polyvinyl pyrrolidone and human serum albumin.
    Quan G; Zhang L; Guo Y; Liu M; Wang J; Wang Y; Dong B; Liu A; Zhang J; Han Y
    Cryo Letters; 2007; 28(2):95-108. PubMed ID: 17522728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle-mediated intracellular delivery enables cryopreservation of human adipose-derived stem cells using trehalose as the sole cryoprotectant.
    Rao W; Huang H; Wang H; Zhao S; Dumbleton J; Zhao G; He X
    ACS Appl Mater Interfaces; 2015 Mar; 7(8):5017-28. PubMed ID: 25679454
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cryopreservation of hepatocyte (HepG2) cell monolayers: impact of trehalose.
    Stokich B; Osgood Q; Grimm D; Moorthy S; Chakraborty N; Menze MA
    Cryobiology; 2014 Oct; 69(2):281-90. PubMed ID: 25127872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryopreservation of rabbit semen: comparing the effects of different cryoprotectants, cryoprotectant-free vitrification, and the use of albumin plus osmoprotectants on sperm survival and fertility after standard vapor freezing and vitrification.
    Rosato MP; Iaffaldano N
    Theriogenology; 2013 Feb; 79(3):508-16. PubMed ID: 23218394
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comb-like Pseudopeptides Enable Very Rapid and Efficient Intracellular Trehalose Delivery for Enhanced Cryopreservation of Erythrocytes.
    Chen S; Wu L; Ren J; Bemmer V; Zajicek R; Chen R
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):28941-28951. PubMed ID: 32496048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.
    Hara J; Tottori J; Anders M; Dadhwal S; Asuri P; Mobed-Miremadi M
    Artif Cells Nanomed Biotechnol; 2017 May; 45(3):609-616. PubMed ID: 27050441
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic effects of liposomes, trehalose, and hydroxyethyl starch for cryopreservation of human erythrocytes.
    Stoll C; Holovati JL; Acker JP; Wolkers WF
    Biotechnol Prog; 2012; 28(2):364-71. PubMed ID: 22275294
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of cryoprotective media on cryopreservation of cells using loading trehalose.
    Jong KS; Hui YL; Yu CM; Ki SY; Kim SH; Pak HH
    Cryobiology; 2020 Feb; 92():258-259. PubMed ID: 31730757
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Integration of Trehalose Lipids with Dissociative Trehalose Enables Cryopreservation of Human RBCs.
    Wang Y; Gao S; Zhu K; Ren L; Yuan X
    ACS Biomater Sci Eng; 2023 Jan; 9(1):498-507. PubMed ID: 36577138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trehalose glycopolymers for cryopreservation of tissue-engineered constructs.
    Wang J; Shi X; Xiong M; Tan WS; Cai H
    Cryobiology; 2022 Feb; 104():47-55. PubMed ID: 34800528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of intracellular and extracellular trehalose as a cryoprotectant of stem cells obtained from umbilical cord blood.
    Motta JP; Paraguassú-Braga FH; Bouzas LF; Porto LC
    Cryobiology; 2014 Jun; 68(3):343-8. PubMed ID: 24769312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cryopreservation of platelets using trehalose: the role of membrane phase behavior during freezing.
    Gläfke C; Akhoondi M; Oldenhof H; Sieme H; Wolkers WF
    Biotechnol Prog; 2012; 28(5):1347-54. PubMed ID: 22837111
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.