BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

419 related articles for article (PubMed ID: 27497696)

  • 1. Keap1, the cysteine-based mammalian intracellular sensor for electrophiles and oxidants.
    Dinkova-Kostova AT; Kostov RV; Canning P
    Arch Biochem Biophys; 2017 Mar; 617():84-93. PubMed ID: 27497696
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Zinc-binding triggers a conformational-switch in the cullin-3 substrate adaptor protein KEAP1 that controls transcription factor NRF2.
    McMahon M; Swift SR; Hayes JD
    Toxicol Appl Pharmacol; 2018 Dec; 360():45-57. PubMed ID: 30261176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. KEAP1, a cysteine-based sensor and a drug target for the prevention and treatment of chronic disease.
    Dayalan Naidu S; Dinkova-Kostova AT
    Open Biol; 2020 Jun; 10(6):200105. PubMed ID: 32574549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Diffusion dynamics of the Keap1-Cullin3 interaction in single live cells.
    Baird L; Dinkova-Kostova AT
    Biochem Biophys Res Commun; 2013 Mar; 433(1):58-65. PubMed ID: 23454126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases.
    Villeneuve NF; Lau A; Zhang DD
    Antioxid Redox Signal; 2010 Dec; 13(11):1699-712. PubMed ID: 20486766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring Keap1-Nrf2 interactions in single live cells.
    Baird L; Swift S; Llères D; Dinkova-Kostova AT
    Biotechnol Adv; 2014 Nov; 32(6):1133-44. PubMed ID: 24681086
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring the Interaction of Transcription Factor Nrf2 with Its Negative Regulator Keap1 in Single Live Cells by an Improved FRET/FLIM Analysis.
    Dikovskaya D; Appleton PL; Bento-Pereira C; Dinkova-Kostova AT
    Chem Res Toxicol; 2019 Mar; 32(3):500-512. PubMed ID: 30793592
    [TBL] [Abstract][Full Text] [Related]  

  • 8. NRF2 cysteine residues are critical for oxidant/electrophile-sensing, Kelch-like ECH-associated protein-1-dependent ubiquitination-proteasomal degradation, and transcription activation.
    He X; Ma Q
    Mol Pharmacol; 2009 Dec; 76(6):1265-78. PubMed ID: 19786557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory flexibility in the Nrf2-mediated stress response is conferred by conformational cycling of the Keap1-Nrf2 protein complex.
    Baird L; Llères D; Swift S; Dinkova-Kostova AT
    Proc Natl Acad Sci U S A; 2013 Sep; 110(38):15259-64. PubMed ID: 23986495
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2.
    Kobayashi A; Kang MI; Okawa H; Ohtsuji M; Zenke Y; Chiba T; Igarashi K; Yamamoto M
    Mol Cell Biol; 2004 Aug; 24(16):7130-9. PubMed ID: 15282312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Keap1-Nrf2 system as an in vivo sensor for electrophiles.
    Uruno A; Motohashi H
    Nitric Oxide; 2011 Aug; 25(2):153-60. PubMed ID: 21385624
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Keap1 is a redox-regulated substrate adaptor protein for a Cul3-dependent ubiquitin ligase complex.
    Zhang DD; Lo SC; Cross JV; Templeton DJ; Hannink M
    Mol Cell Biol; 2004 Dec; 24(24):10941-53. PubMed ID: 15572695
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heteroaromatic 4-arylquinols are novel inducers of nuclear factor-erythroid 2-related factor 2 (Nrf2).
    Wong DP; Wells G; Hagen T
    Eur J Pharmacol; 2010 Sep; 643(2-3):188-94. PubMed ID: 20599909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and mechanistic insights into the Keap1-Nrf2 system as a route to drug discovery.
    Madden SK; Itzhaki LS
    Biochim Biophys Acta Proteins Proteom; 2020 Jul; 1868(7):140405. PubMed ID: 32120017
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sp1 is a substrate of Keap1 and regulates the activity of CRL4A
    Siswanto FM; Oguro A; Imaoka S
    J Biol Chem; 2021; 296():100704. PubMed ID: 33895141
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cul3-mediated Nrf2 ubiquitination and antioxidant response element (ARE) activation are dependent on the partial molar volume at position 151 of Keap1.
    Eggler AL; Small E; Hannink M; Mesecar AD
    Biochem J; 2009 Jul; 422(1):171-80. PubMed ID: 19489739
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The spatiotemporal regulation of the Keap1-Nrf2 pathway and its importance in cellular bioenergetics.
    Dinkova-Kostova AT; Baird L; Holmström KM; Meyer CJ; Abramov AY
    Biochem Soc Trans; 2015 Aug; 43(4):602-10. PubMed ID: 26551700
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological significance of reactive cysteine residues of Keap1 in determining Nrf2 activity.
    Yamamoto T; Suzuki T; Kobayashi A; Wakabayashi J; Maher J; Motohashi H; Yamamoto M
    Mol Cell Biol; 2008 Apr; 28(8):2758-70. PubMed ID: 18268004
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular Basis of the KEAP1-NRF2 Signaling Pathway.
    Suzuki T; Takahashi J; Yamamoto M
    Mol Cells; 2023 Mar; 46(3):133-141. PubMed ID: 36994473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system.
    Takaya K; Suzuki T; Motohashi H; Onodera K; Satomi S; Kensler TW; Yamamoto M
    Free Radic Biol Med; 2012 Aug; 53(4):817-27. PubMed ID: 22732183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.