These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27497750)

  • 1. Thermodynamics of complex coacervation.
    Kayitmazer AB
    Adv Colloid Interface Sci; 2017 Jan; 239():169-177. PubMed ID: 27497750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase behavior and molecular thermodynamics of coacervation in oppositely charged polyelectrolyte/surfactant systems: a cationic polymer JR 400 and anionic surfactant SDS mixture.
    Li D; Kelkar MS; Wagner NJ
    Langmuir; 2012 Jul; 28(28):10348-62. PubMed ID: 22769434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamic characterization of polypeptide complex coacervation.
    Priftis D; Laugel N; Tirrell M
    Langmuir; 2012 Nov; 28(45):15947-57. PubMed ID: 23083137
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of aggregate formation between a non-ionic polymer and ionic surfactants: An isothermal titration calorimetric study.
    Patel SG; Bummer PM
    Int J Pharm; 2017 Jan; 516(1-2):131-143. PubMed ID: 27789368
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactions between Oppositely Charged Polyelectrolytes by Isothermal Titration Calorimetry: Effect of Ionic Strength and Charge Density.
    Lounis FM; Chamieh J; Leclercq L; Gonzalez P; Geneste A; Prelot B; Cottet H
    J Phys Chem B; 2017 Mar; 121(12):2684-2694. PubMed ID: 28263598
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein purification by polyelectrolyte coacervation: influence of protein charge anisotropy on selectivity.
    Xu Y; Mazzawi M; Chen K; Sun L; Dubin PL
    Biomacromolecules; 2011 May; 12(5):1512-22. PubMed ID: 21413681
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complexation and coacervation of polyelectrolytes with oppositely charged colloids.
    Kizilay E; Kayitmazer AB; Dubin PL
    Adv Colloid Interface Sci; 2011 Sep; 167(1-2):24-37. PubMed ID: 21803318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing oppositely charged surfactant and copolymer interactions by isothermal titration microcalorimetry.
    Courtois J; Berret JF
    Langmuir; 2010 Jul; 26(14):11750-8. PubMed ID: 20557117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural study of coacervation in protein-polyelectrolyte complexes.
    Chodankar S; Aswal VK; Kohlbrecher J; Vavrin R; Wagh AG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):031913. PubMed ID: 18851071
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isothermal titration calorimetry study of the polyelectrolyte complexation of xanthan and chitosan samples of different degree of polymerization.
    Maurstad G; Kitamura S; Stokke BT
    Biopolymers; 2012 Jan; 97(1):1-10. PubMed ID: 21732323
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calorimetric determination of surfactant/polyelectrolyte binding isotherms.
    Lapitsky Y; Parikh M; Kaler EW
    J Phys Chem B; 2007 Jul; 111(29):8379-87. PubMed ID: 17388496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaction of Linear Polyelectrolytes with Proteins: Role of Specific Charge-Charge Interaction and Ionic Strength.
    Bukala J; Yavvari P; Walkowiak JJ; Ballauff M; Weinhart M
    Biomolecules; 2021 Sep; 11(9):. PubMed ID: 34572590
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrostatic free energy of weakly charged macromolecules in solution and intermacromolecular complexes consisting of oppositely charged polymers.
    Biesheuvel PM; Cohen Stuart MA
    Langmuir; 2004 Mar; 20(7):2785-91. PubMed ID: 15835153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microcalorimetric evidence of hydrophobic interactions between hydrophobically modified cationic polysaccharides and surfactants of the same charge.
    Bai G; Catita JA; Nichifor M; Bastos M
    J Phys Chem B; 2007 Oct; 111(39):11453-62. PubMed ID: 17824638
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complex equilibria, speciation, and heteroprotein coacervation of lactoferrin and β-lactoglobulin.
    Flanagan SE; Malanowski AJ; Kizilay E; Seeman D; Dubin PL; Donato-Capel L; Bovetto L; Schmitt C
    Langmuir; 2015 Feb; 31(5):1776-83. PubMed ID: 25565379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical thermodynamics of liquid-liquid phase separation in ternary systems during complex coacervation.
    Pawar N; Bohidar HB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Sep; 82(3 Pt 2):036107. PubMed ID: 21230139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubilization of octane in cationic surfactant-anionic polymer complexes: Effect of ionic strength.
    Zhang H; Deng L; Sun P; Que F; Weiss J
    J Colloid Interface Sci; 2016 Jan; 461():88-95. PubMed ID: 26397914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of isothermal titration calorimetry to study surfactant aggregation in colloidal systems.
    Loh W; Brinatti C; Tam KC
    Biochim Biophys Acta; 2016 May; 1860(5):999-1016. PubMed ID: 26459003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Monte Carlo simulation in addressing key issues of complex coacervation formed by polyelectrolytes and oppositely charged colloids.
    Xiao J; Li Y; Huang Q
    Adv Colloid Interface Sci; 2017 Jan; 239():31-45. PubMed ID: 27265512
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyelectrolyte Complexation When Considering the Counterion-Mediated Hydrogen Bonding.
    Yuan H; Liu G
    Langmuir; 2022 Jul; 38(26):8179-8186. PubMed ID: 35748635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.