These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

76 related articles for article (PubMed ID: 27497755)

  • 1. Reliability of 3D gait data across multiple laboratories.
    Kaufman K; Miller E; Kingsbury T; Russell Esposito E; Wolf E; Wilken J; Wyatt M
    Gait Posture; 2016 Sep; 49():375-381. PubMed ID: 27497755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BlazePose-Seq2Seq: Leveraging Regular RGB Cameras for Robust Gait Assessment.
    Hulleck AA; AlShehhi A; El Rich M; Khan R; Katmah R; Mohseni M; Arjmand N; Khalaf K
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():1715-1724. PubMed ID: 38648155
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inter-trial variability is higher in 3D markerless compared to marker-based motion capture: Implications for data post-processing and analysis.
    Horsak B; Prock K; Krondorfer P; Siragy T; Simonlehner M; Dumphart B
    J Biomech; 2024 Mar; 166():112049. PubMed ID: 38493576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Five ways in which rookie lab leaders can get up to speed.
    Madhusoodanan J
    Nature; 2023 Nov; 623(7986):446-448. PubMed ID: 37932558
    [No Abstract]   [Full Text] [Related]  

  • 5. The three-dimensional kinematics and spatiotemporal parameters of gait in 6-10 year old typically developed children in the Cape Metropole of South Africa - a pilot study.
    Smith Y; Louw Q; Brink Y
    BMC Pediatr; 2016 Dec; 16(1):200. PubMed ID: 27912747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Age-Related Differences in Gait Kinematics, Kinetics, and Muscle Function: A Principal Component Analysis.
    Schloemer SA; Thompson JA; Silder A; Thelen DG; Siston RA
    Ann Biomed Eng; 2017 Mar; 45(3):695-710. PubMed ID: 27573696
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinematic Changes during Prolonged Fast-Walking in Old and Young Adults.
    Oliveira CF; Vieira ER; Machado Sousa FM; Vilas-Boas JP
    Front Med (Lausanne); 2017; 4():207. PubMed ID: 29218309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A practical step length algorithm using lower limb angular velocities.
    Allseits E; Agrawal V; Lučarević J; Gailey R; Gaunaurd I; Bennett C
    J Biomech; 2018 Jan; 66():137-144. PubMed ID: 29198369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fractal fluctuations in spatiotemporal variables when walking on a self-paced treadmill.
    Choi JS; Kang DW; Seo JW; Tack GR
    J Biomech; 2017 Dec; 65():154-160. PubMed ID: 29096982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of age and speed on foot and ankle kinematics assessed using a 4-segment foot model.
    van Hoeve S; Leenstra B; Willems P; Poeze M; Meijer K
    Medicine (Baltimore); 2017 Sep; 96(35):e7907. PubMed ID: 28858109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Foot structure is significantly associated to subtalar joint kinetics and mechanical energetics.
    Maharaj JN; Cresswell AG; Lichtwark GA
    Gait Posture; 2017 Oct; 58():159-165. PubMed ID: 28783556
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatiotemporal and plantar pressure patterns of 1000 healthy individuals aged 3-101 years.
    McKay MJ; Baldwin JN; Ferreira P; Simic M; Vanicek N; Wojciechowski E; Mudge A; Burns J;
    Gait Posture; 2017 Oct; 58():78-87. PubMed ID: 28763713
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Older adults must hurry at pedestrian lights! A cross-sectional analysis of preferred and fast walking speed under single- and dual-task conditions.
    Eggenberger P; Tomovic S; Münzer T; de Bruin ED
    PLoS One; 2017; 12(7):e0182180. PubMed ID: 28759587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gait analysis on force treadmill in children: comparison with results from ground-based force platforms.
    Tesio L; Malloggi C; Portinaro NM; Catino L; Lovecchio N; Rota V
    Int J Rehabil Res; 2017 Dec; 40(4):315-324. PubMed ID: 28719477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of treadmill and overground walking on preferred walking speed and gait kinematics in healthy, physically active older adults.
    Malatesta D; Canepa M; Menendez Fernandez A
    Eur J Appl Physiol; 2017 Sep; 117(9):1833-1843. PubMed ID: 28687953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison in three dimensional gait kinematics between young and older adults on land and in shallow water.
    Abdul Jabbar K; Kudo S; Goh KW; Goh MR
    Gait Posture; 2017 Sep; 57():102-108. PubMed ID: 28599157
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation.
    Lin YC; Pandy MG
    J Biomech; 2017 Jul; 59():1-8. PubMed ID: 28583674
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of unilateral real-time biofeedback on propulsive forces during gait.
    Schenck C; Kesar TM
    J Neuroeng Rehabil; 2017 Jun; 14(1):52. PubMed ID: 28583196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of stride frequency for walk-to-run transition in humans.
    Hansen EA; Kristensen LAR; Nielsen AM; Voigt M; Madeleine P
    Sci Rep; 2017 May; 7(1):2010. PubMed ID: 28515449
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.