BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 27497973)

  • 1. Mutation of a regulator Ask10p improves xylose isomerase activity through up-regulation of molecular chaperones in Saccharomyces cerevisiae.
    Hou J; Jiao C; Peng B; Shen Y; Bao X
    Metab Eng; 2016 Nov; 38():241-250. PubMed ID: 27497973
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae.
    Zhou H; Cheng JS; Wang BL; Fink GR; Stephanopoulos G
    Metab Eng; 2012 Nov; 14(6):611-22. PubMed ID: 22921355
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome changes in adaptive evolution of xylose-fermenting industrial Saccharomyces cerevisiae strains with δ-integration of different xylA genes.
    Li YC; Zeng WY; Gou M; Sun ZY; Xia ZY; Tang YQ
    Appl Microbiol Biotechnol; 2017 Oct; 101(20):7741-7753. PubMed ID: 28900684
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of efficient xylose fermentation in Saccharomyces cerevisiae: xylose isomerase as a key component.
    van Maris AJ; Winkler AA; Kuyper M; de Laat WT; van Dijken JP; Pronk JT
    Adv Biochem Eng Biotechnol; 2007; 108():179-204. PubMed ID: 17846724
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation.
    Kuyper M; Hartog MM; Toirkens MJ; Almering MJ; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2005 Feb; 5(4-5):399-409. PubMed ID: 15691745
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Xylitol does not inhibit xylose fermentation by engineered Saccharomyces cerevisiae expressing xylA as severely as it inhibits xylose isomerase reaction in vitro.
    Ha SJ; Kim SR; Choi JH; Park MS; Jin YS
    Appl Microbiol Biotechnol; 2011 Oct; 92(1):77-84. PubMed ID: 21655987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.
    Lee SM; Jellison T; Alper HS
    Appl Environ Microbiol; 2012 Aug; 78(16):5708-16. PubMed ID: 22685138
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering considerations for the heterologous expression of xylose-catabolic pathways in Saccharomyces cerevisiae.
    Jeong D; Oh EJ; Ko JK; Nam JO; Park HS; Jin YS; Lee EJ; Kim SR
    PLoS One; 2020; 15(7):e0236294. PubMed ID: 32716960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of limiting metabolic steps in the utilization of xylose by recombinant Saccharomyces cerevisiae using metabolic engineering.
    Karhumaa K; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Yeast; 2005 Apr; 22(5):359-68. PubMed ID: 15806613
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae.
    Hou J; Shen Y; Jiao C; Ge R; Zhang X; Bao X
    J Biosci Bioeng; 2016 Feb; 121(2):160-5. PubMed ID: 26160406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutations in PMR1 stimulate xylose isomerase activity and anaerobic growth on xylose of engineered Saccharomyces cerevisiae by influencing manganese homeostasis.
    Verhoeven MD; Lee M; Kamoen L; van den Broek M; Janssen DB; Daran JG; van Maris AJ; Pronk JT
    Sci Rep; 2017 Apr; 7():46155. PubMed ID: 28401919
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deletion of the GRE3 aldose reductase gene and its influence on xylose metabolism in recombinant strains of Saccharomyces cerevisiae expressing the xylA and XKS1 genes.
    Träff KL; Otero Cordero RR; van Zyl WH; Hahn-Hägerdal B
    Appl Environ Microbiol; 2001 Dec; 67(12):5668-74. PubMed ID: 11722921
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle.
    Kuyper M; Winkler AA; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2004 Mar; 4(6):655-64. PubMed ID: 15040955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolomic and (13)C-metabolic flux analysis of a xylose-consuming Saccharomyces cerevisiae strain expressing xylose isomerase.
    Wasylenko TM; Stephanopoulos G
    Biotechnol Bioeng; 2015 Mar; 112(3):470-83. PubMed ID: 25311863
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae?
    Kuyper M; Harhangi HR; Stave AK; Winkler AA; Jetten MS; de Laat WT; den Ridder JJ; Op den Camp HJ; van Dijken JP; Pronk JT
    FEMS Yeast Res; 2003 Oct; 4(1):69-78. PubMed ID: 14554198
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase.
    Smith J; van Rensburg E; Görgens JF
    BMC Biotechnol; 2014 May; 14():41. PubMed ID: 24884721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering of Saccharomyces cerevisiae for the efficient co-utilization of glucose and xylose.
    Hou J; Qiu C; Shen Y; Li H; Bao X
    FEMS Yeast Res; 2017 Jun; 17(4):. PubMed ID: 28582494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering of Saccharomyces cerevisiae to utilize xylan as a sole carbohydrate source by co-expression of an endoxylanase, xylosidase and a bacterial xylose isomerase.
    Mert MJ; la Grange DC; Rose SH; van Zyl WH
    J Ind Microbiol Biotechnol; 2016 Apr; 43(4):431-40. PubMed ID: 26749525
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.
    Shen Y; Chen X; Peng B; Chen L; Hou J; Bao X
    Appl Microbiol Biotechnol; 2012 Nov; 96(4):1079-91. PubMed ID: 23053078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of modifications procuring growth on xylose in recombinant Saccharomyces cerevisiae strains carrying the Weimberg pathway.
    Borgström C; Wasserstrom L; Almqvist H; Broberg K; Klein B; Noack S; Lidén G; Gorwa-Grauslund MF
    Metab Eng; 2019 Sep; 55():1-11. PubMed ID: 31150803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.