These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
642 related articles for article (PubMed ID: 27498183)
41. Characterization of bacterial communities associated with Brassica napus L. growing on a Zn-contaminated soil and their effects on root growth. Montalbán B; Croes S; Weyens N; Lobo MC; Pérez-Sanz A; Vangronsveld J Int J Phytoremediation; 2016 Oct; 18(10):985-93. PubMed ID: 27159736 [TBL] [Abstract][Full Text] [Related]
42. Serpentine endophytic bacterium Pseudomonas azotoformans ASS1 accelerates phytoremediation of soil metals under drought stress. Ma Y; Rajkumar M; Moreno A; Zhang C; Freitas H Chemosphere; 2017 Oct; 185():75-85. PubMed ID: 28686889 [TBL] [Abstract][Full Text] [Related]
43. Leguminous plants nodulated by selected strains of Cupriavidus necator grow in heavy metal contaminated soils amended with calcium silicate. Avelar Ferreira PA; Lopes G; Bomfeti CA; de Oliveira Longatti SM; de Sousa Soares CR; Guimarães Guilherme LR; de Souza Moreira FM World J Microbiol Biotechnol; 2013 Nov; 29(11):2055-66. PubMed ID: 23670312 [TBL] [Abstract][Full Text] [Related]
44. Effect of bacterial inoculation of strains of Pseudomonas aeruginosa, Alcaligenes feacalis and Bacillus subtilis on germination, growth and heavy metal (Cd, Cr, and Ni) uptake of Brassica juncea. Ndeddy Aka RJ; Babalola OO Int J Phytoremediation; 2016; 18(2):200-9. PubMed ID: 26503637 [TBL] [Abstract][Full Text] [Related]
45. Enhancement of the germination and growth of Panicum miliaceum and Brassica juncea in Cd- and Zn-contaminated soil inoculated with heavy-metal-tolerant Leifsonia sp. ZP3. Cho I; Lee SY; Cho KS World J Microbiol Biotechnol; 2024 Jun; 40(8):245. PubMed ID: 38884883 [TBL] [Abstract][Full Text] [Related]
46. Characterization of plant-growth-promoting effects and concurrent promotion of heavy metal accumulation in the tissues of the plants grown in the polluted soil by Burkholderia strain LD-11. Huang GH; Tian HH; Liu HY; Fan XW; Liang Y; Li YZ Int J Phytoremediation; 2013; 15(10):991-1009. PubMed ID: 23819291 [TBL] [Abstract][Full Text] [Related]
47. Assessment of plant growth promoting bacterial populations in the rhizosphere of metallophytes from the Kettara mine, Marrakech. Benidire L; Pereira SI; Castro PM; Boularbah A Environ Sci Pollut Res Int; 2016 Nov; 23(21):21751-21765. PubMed ID: 27522210 [TBL] [Abstract][Full Text] [Related]
48. Mine land valorization through energy maize production enhanced by the application of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi. Moreira H; Pereira SI; Marques AP; Rangel AO; Castro PM Environ Sci Pollut Res Int; 2016 Apr; 23(7):6940-50. PubMed ID: 26676544 [TBL] [Abstract][Full Text] [Related]
49. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. Koo SY; Cho KS J Microbiol Biotechnol; 2009 Nov; 19(11):1431-8. PubMed ID: 19996698 [TBL] [Abstract][Full Text] [Related]
50. Genetic and biochemical characterization of rhizobacterial strains and their potential use in combination with chelants for assisted phytoremediation. Cicatelli A; Guarino F; Baldan E; Castiglione S Environ Sci Pollut Res Int; 2017 Mar; 24(9):8866-8878. PubMed ID: 27822692 [TBL] [Abstract][Full Text] [Related]
51. Engineering plant-microbe symbiosis for rhizoremediation of heavy metals. Wu CH; Wood TK; Mulchandani A; Chen W Appl Environ Microbiol; 2006 Feb; 72(2):1129-34. PubMed ID: 16461658 [TBL] [Abstract][Full Text] [Related]
52. "In situ" phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. Dary M; Chamber-Pérez MA; Palomares AJ; Pajuelo E J Hazard Mater; 2010 May; 177(1-3):323-30. PubMed ID: 20056325 [TBL] [Abstract][Full Text] [Related]
53. Identification of Cd-resistant microorganisms from heavy metal-contaminated soil and its potential in promoting the growth and Cd accumulation of bermudagrass. Xie Y; Bu H; Feng Q; Wassie M; Amee M; Jiang Y; Bi Y; Hu L; Chen L Environ Res; 2021 Sep; 200():111730. PubMed ID: 34293315 [TBL] [Abstract][Full Text] [Related]
54. Analysis of copper tolerant rhizobacteria from the industrial belt of Gujarat, western India for plant growth promotion in metal polluted agriculture soils. Sharaff M; Kamat S; Archana G Ecotoxicol Environ Saf; 2017 Apr; 138():113-121. PubMed ID: 28038338 [TBL] [Abstract][Full Text] [Related]
55. [Numerical taxonomy and 16S rDNA PCR-rFLP analysis of rhizobial strains isolated from root nodules of cowpea and mung bean grown in different regions of China]. Zhang YF; Wang FQ; Chen WX Wei Sheng Wu Xue Bao; 2006 Dec; 46(6):861-8. PubMed ID: 17302144 [TBL] [Abstract][Full Text] [Related]
57. The effect of plant growth-promoting rhizobacteria on the growth, physiology, and Cd uptake of Arundo donax L. Sarathambal C; Khankhane PJ; Gharde Y; Kumar B; Varun M; Arun S Int J Phytoremediation; 2017 Apr; 19(4):360-370. PubMed ID: 27592507 [TBL] [Abstract][Full Text] [Related]
58. Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. He H; Ye Z; Yang D; Yan J; Xiao L; Zhong T; Yuan M; Cai X; Fang Z; Jing Y Chemosphere; 2013 Feb; 90(6):1960-5. PubMed ID: 23177711 [TBL] [Abstract][Full Text] [Related]
59. Biogeography of symbiotic and other endophytic bacteria isolated from medicinal Glycyrrhiza species in China. Li L; Sinkko H; Montonen L; Wei G; Lindström K; Räsänen LA FEMS Microbiol Ecol; 2012 Jan; 79(1):46-68. PubMed ID: 22066910 [TBL] [Abstract][Full Text] [Related]
60. Isolation and characterization of the heavy metal resistant bacteria CCNWRS33-2 isolated from root nodule of Lespedeza cuneata in gold mine tailings in China. Wei G; Fan L; Zhu W; Fu Y; Yu J; Tang M J Hazard Mater; 2009 Feb; 162(1):50-6. PubMed ID: 18562095 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]