These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27498252)

  • 1. Granulation of susceptible sludge under carbon deficient conditions: A case of denitrifying sulfur conversion-associated EBPR process.
    Guo G; Wu D; Hao T; Mackey HR; Wei L; Lu H; Chen G
    Water Res; 2016 Oct; 103():444-452. PubMed ID: 27498252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional bacteria and process metabolism of the Denitrifying Sulfur conversion-associated Enhanced Biological Phosphorus Removal (DS-EBPR) system: An investigation by operating the system from deterioration to restoration.
    Guo G; Wu D; Hao T; Mackey HR; Wei L; Wang H; Chen G
    Water Res; 2016 May; 95():289-99. PubMed ID: 27010789
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and characterization of the micro-size granular sludge in denitrifying sulfur-conversion associated enhanced biological phosphorus removal (DS-EBPR) process.
    Zhao Q; Yu M; Lu H; Zhang YH; Biswal BK; Chen GH; Wu D
    Bioresour Technol; 2019 Nov; 291():121871. PubMed ID: 31369924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo granulation of sewage-borne microorganisms: A proof of concept on cultivating aerobic granular sludge without activated sludge and effective enhanced biological phosphorus removal.
    Sarvajith M; Nancharaiah YV
    Environ Res; 2023 May; 224():115500. PubMed ID: 36791839
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of sulfate-reducing granular sludge in the SANI(®) process.
    Hao T; Wei L; Lu H; Chui H; Mackey HR; van Loosdrecht MC; Chen G
    Water Res; 2013 Dec; 47(19):7042-52. PubMed ID: 24200003
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of granular activated carbon on the aerobic granulation of sludge and its mechanism.
    Tao J; Qin L; Liu X; Li B; Chen J; You J; Shen Y; Chen X
    Bioresour Technol; 2017 Jul; 236():60-67. PubMed ID: 28390278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of hydraulic retention time on aerobic granulation and granule growth kinetics at steady state with a fast start-up strategy.
    Liu YQ; Zhang X; Zhang R; Liu WT; Tay JH
    Appl Microbiol Biotechnol; 2016 Jan; 100(1):469-77. PubMed ID: 26403920
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Granulation of sulfur-oxidizing bacteria for autotrophic denitrification.
    Yang W; Lu H; Khanal SK; Zhao Q; Meng L; Chen GH
    Water Res; 2016 Nov; 104():507-519. PubMed ID: 27589211
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the granulation process of activated sludge in a biological phosphorus removal sequencing batch reactor.
    Wu CY; Peng YZ; Wang RD; Zhou YX
    Chemosphere; 2012 Feb; 86(8):767-73. PubMed ID: 22130123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Investigation of aerobic granular sludge cultivation by feed loading as a control strategy].
    Shi XH; Liu F; Liu H; Zhu JR
    Huan Jing Ke Xue; 2007 May; 28(5):1026-32. PubMed ID: 17633174
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast formation of aerobic granules by combining strong hydraulic selection pressure with overstressed organic loading rate.
    Liu YQ; Tay JH
    Water Res; 2015 Sep; 80():256-66. PubMed ID: 26005786
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous nitrogen and phosphorus removal in the sulfur cycle-associated Enhanced Biological Phosphorus Removal (EBPR) process.
    Wu D; Ekama GA; Wang HG; Wei L; Lu H; Chui HK; Liu WT; Brdjanovic D; van Loosdrecht MC; Chen GH
    Water Res; 2014 Feb; 49():251-64. PubMed ID: 24342048
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accelerated start-up and enhanced granulation in upflow anaerobic sludge blanket reactors.
    Show KY; Wang Y; Foong SF; Tay JH
    Water Res; 2004 May; 38(9):2292-303. PubMed ID: 15142790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimizing granulation of a sulfide-based autotrophic denitrification (SOAD) sludge: Reactor configuration and mixing mode.
    Guo G; Hao T
    Sci Total Environ; 2021 Jan; 750():141626. PubMed ID: 32858296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a novel process for the biological conversion of H2S and methanethiol to elemental sulfur.
    Sipma J; Janssen AJ; Pol LW; Lettinga G
    Biotechnol Bioeng; 2003 Apr; 82(1):1-11. PubMed ID: 12569619
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Experimental investigation of aerobic granule cultivation in high strength Vc wastewater].
    Wang SQ; Zhang S; Li XN; Zhu JR
    Huan Jing Ke Xue; 2007 Oct; 28(10):2243-8. PubMed ID: 18268986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced granulation of activated sludge in an airlift reactor for organic carbon removal and ammonia retention from industrial fermentation wastewater: A comparative study.
    Duan J; Kitamura K; Tsukamoto H; Van Phan H; Oba K; Hori T; Fujiwara T; Terada A
    Water Res; 2024 Mar; 251():121091. PubMed ID: 38244299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Effects of organic loading rate on the cultivation and characteristic of granular sludge with phosphorus removal].
    Zhang XL; Liu S; Chen X
    Huan Jing Ke Xue; 2011 Jul; 32(7):2030-5. PubMed ID: 21922826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Denitrifying sulfur conversion-associated EBPR: Effects of temperature and carbon source on anaerobic metabolism and performance.
    Guo G; Wu D; Ekama GA; Hao T; Mackey HR; Chen G
    Water Res; 2018 Sep; 141():9-18. PubMed ID: 29753976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.