These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

278 related articles for article (PubMed ID: 27498593)

  • 1. Globular-disorder transition in proteins: a compromise between hydrophobic and electrostatic interactions?
    Baruah A; Biswas P
    Phys Chem Chem Phys; 2016 Aug; 18(33):23207-14. PubMed ID: 27498593
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Composition-related structural transition of random peptides: insight into the boundary between intrinsically disordered proteins and folded proteins.
    Kang WB; He C; Liu ZX; Wang J; Wang W
    J Biomol Struct Dyn; 2019 May; 37(8):1956-1967. PubMed ID: 29734867
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relaxation to native conformation of a bond-fluctuating protein chain with hydrophobic and polar nodes.
    Bjursell J; Pandey RB
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Nov; 70(5 Pt 1):052904. PubMed ID: 15600673
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of local and nonlocal interactions in folding and misfolding of globular proteins.
    Kumar A; Baruah A; Biswas P
    J Chem Phys; 2017 Feb; 146(6):065102. PubMed ID: 28201889
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrophobic moments, shape, and packing in disordered proteins.
    Rawat N; Biswas P
    J Phys Chem B; 2012 Jun; 116(22):6326-35. PubMed ID: 22582807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model.
    Garcia LG; Araújo AF
    Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Natively unfolded protein stability as a coil-to-globule transition in charge/hydropathy space.
    Ashbaugh HS; Hatch HW
    J Am Chem Soc; 2008 Jul; 130(29):9536-42. PubMed ID: 18576630
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced conformational sampling in Monte Carlo simulations of proteins: application to a constrained peptide.
    Kidera A
    Proc Natl Acad Sci U S A; 1995 Oct; 92(21):9886-9. PubMed ID: 7568238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Monte Carlo studies on equilibrium globular protein folding. II. Beta-barrel globular protein models.
    Skolnick J; Kolinski A; Yaris R
    Biopolymers; 1989 Jun; 28(6):1059-95. PubMed ID: 2730942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A minimal proteinlike lattice model: an alpha-helix motif.
    Pokarowski P; Droste K; Kolinski A
    J Chem Phys; 2005 Jun; 122(21):214915. PubMed ID: 15974798
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation properties of a disordered protein are tunable by pH and depend on its net charge per residue.
    Tedeschi G; Mangiagalli M; Chmielewska S; Lotti M; Natalello A; Brocca S
    Biochim Biophys Acta Gen Subj; 2017 Nov; 1861(11 Pt A):2543-2550. PubMed ID: 28890401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Monte Carlo simulations of a new lattice model of globular protein folding, structure and dynamics.
    Skolnick J; Kolinski A
    J Mol Biol; 1991 Sep; 221(2):499-531. PubMed ID: 1920430
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Monte Carlo study of the folding of a six-stranded Greek key globular protein.
    Skolnick J; Kolinski A; Yaris R
    Proc Natl Acad Sci U S A; 1989 Feb; 86(4):1229-33. PubMed ID: 2919171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the electrostatic interactions in proteins of different functional and folding type.
    Spassov VZ; Karshikoff AD; Ladenstein R
    Protein Sci; 1994 Sep; 3(9):1556-69. PubMed ID: 7833815
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-native interactions, effective contact order, and protein folding: a mutational investigation with the energetically frustrated hydrophobic model.
    Treptow WL; Barbosa MA; Garcia LG; Pereira de Araújo AF
    Proteins; 2002 Nov; 49(2):167-80. PubMed ID: 12210998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Entropy reduction effect imposed by hydrogen bond formation on protein folding cooperativity: evidence from a hydrophobic minimalist model.
    Barbosa MA; Garcia LG; Pereira de Araújo AF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Nov; 72(5 Pt 1):051903. PubMed ID: 16383641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Statistical mechanics of protein folding, unfolding and fluctuation.
    Gło N
    Adv Biophys; 1976; ():65-113. PubMed ID: 1015397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple protein folding nuclei and the transition state ensemble in two-state proteins.
    Klimov DK; Thirumalai D
    Proteins; 2001 Jun; 43(4):465-75. PubMed ID: 11340662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spatial optimization of electrostatic interactions between the ionized groups in globular proteins.
    Spassov VZ; Atanasov BP
    Proteins; 1994 Jul; 19(3):222-9. PubMed ID: 7937735
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo studies on equilibrium globular protein folding. III. The four helix bundle.
    Sikorski A; Skolnick J
    Biopolymers; 1989 Jun; 28(6):1097-113. PubMed ID: 2730943
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.