These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27498632)

  • 1. The Role of Molecular Dynamics Potential of Mean Force Calculations in the Investigation of Enzyme Catalysis.
    Yang Y; Pan L; Lightstone FC; Merz KM
    Methods Enzymol; 2016; 577():1-29. PubMed ID: 27498632
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid schemes based on quantum mechanics/molecular mechanics simulations goals to success, problems, and perspectives.
    Ferrer S; Ruiz-Pernía J; Martí S; Moliner V; Tuñón I; Bertrán J; Andrés J
    Adv Protein Chem Struct Biol; 2011; 85():81-142. PubMed ID: 21920322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions.
    Wang W; Donini O; Reyes CM; Kollman PA
    Annu Rev Biophys Biomol Struct; 2001; 30():211-43. PubMed ID: 11340059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum mechanics/molecular mechanics minimum free-energy path for accurate reaction energetics in solution and enzymes: sequential sampling and optimization on the potential of mean force surface.
    Hu H; Lu Z; Parks JM; Burger SK; Yang W
    J Chem Phys; 2008 Jan; 128(3):034105. PubMed ID: 18205486
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-Scale First-Principles Molecular Dynamics Simulations with Electrostatic Embedding: Application to Acetylcholinesterase Catalysis.
    Fattebert JL; Lau EY; Bennion BJ; Huang P; Lightstone FC
    J Chem Theory Comput; 2015 Dec; 11(12):5688-95. PubMed ID: 26642985
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein dynamics and enzyme catalysis: insights from simulations.
    McGeagh JD; Ranaghan KE; Mulholland AJ
    Biochim Biophys Acta; 2011 Aug; 1814(8):1077-92. PubMed ID: 21167324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Practical Quantum Mechanics Molecular Mechanics Method for the Dynamical Study of Reactions in Biomolecules.
    Mendieta-Moreno JI; Marcos-Alcalde I; Trabada DG; Gómez-Puertas P; Ortega J; Mendieta J
    Adv Protein Chem Struct Biol; 2015; 100():67-88. PubMed ID: 26415841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Catalytic Mechanism of Xanthosine Methyltransferase in Caffeine Biosynthesis from QM/MM Molecular Dynamics and Free Energy Simulations.
    Qian P; Guo HB; Yue Y; Wang L; Yang X; Guo H
    J Chem Inf Model; 2016 Sep; 56(9):1755-61. PubMed ID: 27482605
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics explorations of active site structure in designed and evolved enzymes.
    Osuna S; Jiménez-Osés G; Noey EL; Houk KN
    Acc Chem Res; 2015 Apr; 48(4):1080-9. PubMed ID: 25738880
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comment on "A stationary-wave model of enzyme catalysis" by Carlo Canepa.
    Lonsdale R; Harvey JN; Manby FR; Mulholland AJ
    J Comput Chem; 2011 Jan; 32(2):368-9; author reply 370-1. PubMed ID: 20652884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-scale computational enzymology: enhancing our understanding of enzymatic catalysis.
    Gherib R; Dokainish HM; Gauld JW
    Int J Mol Sci; 2013 Dec; 15(1):401-22. PubMed ID: 24384841
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced sampling and free energy calculations for protein simulations.
    Liao Q
    Prog Mol Biol Transl Sci; 2020; 170():177-213. PubMed ID: 32145945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the phosphatase and the synthase activities of human bisphosphoglycerate mutase: a quantum mechanics/molecular mechanics simulation.
    Chu WT; Zheng QC; Zhang HX
    Phys Chem Chem Phys; 2014 Mar; 16(9):3946-54. PubMed ID: 24441588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Review of computer simulations of isotope effects on biochemical reactions: From the Bigeleisen equation to Feynman's path integral.
    Wong KY; Xu Y; Xu L
    Biochim Biophys Acta; 2015 Nov; 1854(11):1782-94. PubMed ID: 25936775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Catalytic mechanism and performance of computationally designed enzymes for Kemp elimination.
    Alexandrova AN; Röthlisberger D; Baker D; Jorgensen WL
    J Am Chem Soc; 2008 Nov; 130(47):15907-15. PubMed ID: 18975945
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methods for Efficiently and Accurately Computing Quantum Mechanical Free Energies for Enzyme Catalysis.
    Kearns FL; Hudson PS; Boresch S; Woodcock HL
    Methods Enzymol; 2016; 577():75-104. PubMed ID: 27498635
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hybrid quantum and classical methods for computing kinetic isotope effects of chemical reactions in solutions and in enzymes.
    Gao J; Major DT; Fan Y; Lin YL; Ma S; Wong KY
    Methods Mol Biol; 2008; 443():37-62. PubMed ID: 18446281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A stationary-wave model of enzyme catalysis.
    Canepa C
    J Comput Chem; 2010 Jan; 31(2):343-50. PubMed ID: 19479739
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate turnover in mechano-catalytic coupling: A model and its microscopic origin.
    Roy M; Grazioli G; Andricioaei I
    J Chem Phys; 2015 Jul; 143(4):045105. PubMed ID: 26233168
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Molecular Simulation to Study Biocatalysis in Ionic Liquids.
    Sprenger KG; Pfaendtner J
    Methods Enzymol; 2016; 577():419-41. PubMed ID: 27498647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.