BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27498825)

  • 1. Surface area-dependent second harmonic generation from silver nanorods.
    Ngo HM; Luong TT; Ledoux-Rak I
    Phys Chem Chem Phys; 2016 Aug; 18(33):23215-9. PubMed ID: 27498825
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of second harmonic generation of gold nanospheres and nanorods in aqueous solution: the dominant role of surface area.
    Ngo HM; Nguyen PP; Ledoux-Rak I
    Phys Chem Chem Phys; 2016 Jan; 18(4):3352-6. PubMed ID: 26751609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.
    Lee KS; El-Sayed MA
    J Phys Chem B; 2006 Oct; 110(39):19220-5. PubMed ID: 17004772
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Large second harmonic generation from hollow gold nanoprisms: role of plasmon hybridization and structural effects.
    Hazra B; Das K; Chandra M
    Phys Chem Chem Phys; 2017 Jul; 19(28):18394-18399. PubMed ID: 28678252
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different Plasmon Sensing Behavior of Silver and Gold Nanorods.
    Mahmoud MA; El-Sayed MA
    J Phys Chem Lett; 2013 May; 4(9):1541-5. PubMed ID: 26282312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres.
    Favi PM; Valencia MM; Elliott PR; Restrepo A; Gao M; Huang H; Pavon JJ; Webster TJ
    J Biomed Mater Res A; 2015 Dec; 103(12):3940-55. PubMed ID: 26053238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aspect ratio dependence on surface enhanced Raman scattering using silver and gold nanorod substrates.
    Orendorff CJ; Gearheart L; Jana NR; Murphy CJ
    Phys Chem Chem Phys; 2006 Jan; 8(1):165-70. PubMed ID: 16482257
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent advances in analytical and bioanalysis applications of noble metal nanorods.
    Mannelli I; Marco MP
    Anal Bioanal Chem; 2010 Nov; 398(6):2451-69. PubMed ID: 20644918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pure surface plasmon resonance enhancement of the first hyperpolarizability of gold core-silver shell nanoparticles.
    Abid JP; Nappa J; Girault HH; Brevet PF
    J Chem Phys; 2004 Dec; 121(24):12577-82. PubMed ID: 15606279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Shape and size effects in the optical properties of metallic nanorods.
    Stefan Kooij E; Poelsema B
    Phys Chem Chem Phys; 2006 Jul; 8(28):3349-57. PubMed ID: 16835684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorinated beta-diketonate diglyme lanthanide complexes as new second-order nonlinear optical chromophores: the role of f electrons in the dipolar and octupolar contribution to quadratic hyperpolarizability.
    Valore A; Cariati E; Righetto S; Roberto D; Tessore F; Ugo R; FragalĂ  IL; FragalĂ  ME; Malandrino G; De Angelis F; Belpassi L; Ledoux-Rak I; Hoang Thi K; Zyss J
    J Am Chem Soc; 2010 Apr; 132(13):4966-70. PubMed ID: 20225872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical sensing and imaging with metallic nanorods.
    Murphy CJ; Gole AM; Hunyadi SE; Stone JW; Sisco PN; Alkilany A; Kinard BE; Hankins P
    Chem Commun (Camb); 2008 Feb; (5):544-57. PubMed ID: 18209787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.
    Lien MB; Kim JY; Han MG; Chang YC; Chang YC; Ferguson HJ; Zhu Y; Herzing AA; Schotland JC; Kotov NA; Norris TB
    ACS Nano; 2017 Jun; 11(6):5925-5932. PubMed ID: 28510416
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis and optical properties of small Au nanorods using a seedless growth technique.
    Ali MR; Snyder B; El-Sayed MA
    Langmuir; 2012 Jun; 28(25):9807-15. PubMed ID: 22620850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and optical properties of worm-like gold nanorods.
    Huang H; He C; Zeng Y; Xia X; Yu X; Yi P; Chen Z
    J Colloid Interface Sci; 2008 Jun; 322(1):136-42. PubMed ID: 18400232
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Highly enhanced transverse plasmon resonance and tunable double Fano resonances in gold@titania nanorods.
    Ruan Q; Fang C; Jiang R; Jia H; Lai Y; Wang J; Lin HQ
    Nanoscale; 2016 Mar; 8(12):6514-26. PubMed ID: 26935180
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model.
    Jain PK; Eustis S; El-Sayed MA
    J Phys Chem B; 2006 Sep; 110(37):18243-53. PubMed ID: 16970442
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bottom-up design of hybrid polymer nanoassemblies elucidates plasmon-enhanced second harmonic generation from nonlinear optical dyes.
    Ishifuji M; Mitsuishi M; Miyashita T
    J Am Chem Soc; 2009 Apr; 131(12):4418-24. PubMed ID: 19275159
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gold Nanobipyramid-Directed Growth of Length-Variable Silver Nanorods with Multipolar Plasmon Resonances.
    Zhuo X; Zhu X; Li Q; Yang Z; Wang J
    ACS Nano; 2015 Jul; 9(7):7523-35. PubMed ID: 26135608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.