These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27498986)

  • 1. Quantitative determination of activation energies in mechanochemical reactions.
    Fischer F; Wenzel KJ; Rademann K; Emmerling F
    Phys Chem Chem Phys; 2016 Aug; 18(33):23320-5. PubMed ID: 27498986
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time
    Lukin S; Germann LS; Friščić T; Halasz I
    Acc Chem Res; 2022 May; 55(9):1262-1277. PubMed ID: 35446551
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tandem In Situ Monitoring for Quantitative Assessment of Mechanochemical Reactions Involving Structurally Unknown Phases.
    Lukin S; Stolar T; Tireli M; Blanco MV; Babić D; Friščić T; Užarević K; Halasz I
    Chemistry; 2017 Oct; 23(56):13941-13949. PubMed ID: 28639258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Challenging the Ostwald rule of stages in mechanochemical cocrystallisation.
    Germann LS; Arhangelskis M; Etter M; Dinnebier RE; Friščić T
    Chem Sci; 2020 Aug; 11(37):10092-10100. PubMed ID: 34094270
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Real-Time and In Situ Monitoring of Mechanochemical Reactions: A New Playground for All Chemists.
    Užarević K; Halasz I; Friščić T
    J Phys Chem Lett; 2015 Oct; 6(20):4129-40. PubMed ID: 26722788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laboratory real-time and in situ monitoring of mechanochemical milling reactions by Raman spectroscopy.
    Gracin D; Štrukil V; Friščić T; Halasz I; Užarević K
    Angew Chem Int Ed Engl; 2014 Jun; 53(24):6193-7. PubMed ID: 24764165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enthalpy
    Užarević K; Ferdelji N; Mrla T; Julien PA; Halasz B; Friščić T; Halasz I
    Chem Sci; 2018 Mar; 9(9):2525-2532. PubMed ID: 29732130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanochemistry of Gaseous Reactants.
    Bolm C; Hernández JG
    Angew Chem Int Ed Engl; 2019 Mar; 58(11):3285-3299. PubMed ID: 30417972
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy.
    Julien PA; Malvestiti I; Friščić T
    Beilstein J Org Chem; 2017; 13():2160-2168. PubMed ID: 29114323
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Real-time and in situ monitoring of mechanochemical milling reactions.
    Friščić T; Halasz I; Beldon PJ; Belenguer AM; Adams F; Kimber SA; Honkimäki V; Dinnebier RE
    Nat Chem; 2013 Jan; 5(1):66-73. PubMed ID: 23247180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advancing mechanochemical synthesis by combining milling with different energy sources.
    Martinez V; Stolar T; Karadeniz B; Brekalo I; Užarević K
    Nat Rev Chem; 2023 Jan; 7(1):51-65. PubMed ID: 37117822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Situ Investigations of Mechanochemical One-Pot Syntheses.
    Kulla H; Haferkamp S; Akhmetova I; Röllig M; Maierhofer C; Rademann K; Emmerling F
    Angew Chem Int Ed Engl; 2018 May; 57(20):5930-5933. PubMed ID: 29605971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-Resolved In Situ Monitoring of Mechanochemical Reactions.
    Michalchuk AAL; Emmerling F
    Angew Chem Int Ed Engl; 2022 May; 61(21):e202117270. PubMed ID: 35128778
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Altering Product Selectivity by Mechanochemistry.
    Hernández JG; Bolm C
    J Org Chem; 2017 Apr; 82(8):4007-4019. PubMed ID: 28080050
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paving the Way to Establish Protocols: Modeling and Predicting Mechanochemical Reactions.
    Gil-González E; Pérez-Maqueda LA; Sánchez-Jiménez PE; Perejón A
    J Phys Chem Lett; 2021 Jun; 12(23):5540-5546. PubMed ID: 34105353
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanochemistry: A force in disguise and conditional effects towards chemical reactions.
    Mateti S; Mathesh M; Liu Z; Tao T; Ramireddy T; Glushenkov AM; Yang W; Chen YI
    Chem Commun (Camb); 2021 Feb; 57(9):1080-1092. PubMed ID: 33438694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Synchrotron X-ray Diffraction Studies of the Mechanochemical Synthesis of ZnS from its Elements.
    Petersen H; Reichle S; Leiting S; Losch P; Kersten W; Rathmann T; Tseng J; Etter M; Schmidt W; Weidenthaler C
    Chemistry; 2021 Sep; 27(49):12558-12565. PubMed ID: 34062026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metastability and Seeding Effects in the Mechanochemical Hybrid Lead(II) Iodide Formation.
    Wilke M; Gawryluk DJ; Casati N
    Chemistry; 2021 Apr; 27(19):5944-5955. PubMed ID: 33319376
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding Ball Milling Mechanochemical Processes with DFT Calculations and Microkinetic Modeling.
    Pladevall BS; de Aguirre A; Maseras F
    ChemSusChem; 2021 Jul; 14(13):2763-2768. PubMed ID: 33843150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable and rapid preparation of nanosized Fe/Ni-pentlandite particles by mechanochemistry.
    Tetzlaff D; Pellumbi K; Baier DM; Hoof L; Shastry Barkur H; Smialkowski M; Amin HMA; Grätz S; Siegmund D; Borchardt L; Apfel UP
    Chem Sci; 2020 Nov; 11(47):12835-12842. PubMed ID: 34094479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.