BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 27499075)

  • 21. Chemical transformation mediated CRISPR/Cas9 genome editing in Escherichia coli.
    Sun D; Wang L; Mao X; Fei M; Chen Y; Shen M; Qiu J
    Biotechnol Lett; 2019 Feb; 41(2):293-303. PubMed ID: 30547274
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interleukin (IL)-8 polymorphisms contribute in suicide behavior.
    Noroozi R; Omrani MD; Ayatollahi SA; Sayad A; Ata A; Fallah H; Taheri M; Ghafouri-Fard S
    Cytokine; 2018 Nov; 111():28-32. PubMed ID: 30099207
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Temperature effect on CRISPR-Cas9 mediated genome editing.
    Xiang G; Zhang X; An C; Cheng C; Wang H
    J Genet Genomics; 2017 Apr; 44(4):199-205. PubMed ID: 28412228
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functionality of the Interleukin 8 haplotypes in lymphocytes and macrophages in response to gram-negative periodontopathogens.
    Pigossi SC; Anovazzi G; Finoti LS; de Medeiros MC; Mayer MPA; Rossa Junior C; Scarel-Caminaga RM
    Gene; 2019 Mar; 689():152-160. PubMed ID: 30562605
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Research progress in the third-generation genomic editing technology - CRISPR/Cas9].
    Zhou Y; Zong Y; Kong X
    Zhonghua Yi Xue Yi Chuan Xue Za Zhi; 2016 Oct; 33(5):713-6. PubMed ID: 27577230
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Progress in the application of CRISPR: From gene to base editing.
    Wu W; Yang Y; Lei H
    Med Res Rev; 2019 Mar; 39(2):665-683. PubMed ID: 30171624
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Haplotype association of IL-8 gene with Behcet's disease.
    Lee EB; Kim JY; Zhao J; Park MH; Song YW
    Tissue Antigens; 2007 Feb; 69(2):128-32. PubMed ID: 17257314
    [TBL] [Abstract][Full Text] [Related]  

  • 28. CRISPR/Cas9 Genome Editing of Epidermal Growth Factor Receptor Sufficiently Abolished Oncogenicity in Anaplastic Thyroid Cancer.
    Huang LC; Tam KW; Liu WN; Lin CY; Hsu KW; Hsieh WS; Chi WM; Lee AW; Yang JM; Lin CL; Lee CH
    Dis Markers; 2018; 2018():3835783. PubMed ID: 29849821
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Variant IRAK-1 haplotype is associated with increased nuclear factor-kappaB activation and worse outcomes in sepsis.
    Arcaroli J; Silva E; Maloney JP; He Q; Svetkauskaite D; Murphy JR; Abraham E
    Am J Respir Crit Care Med; 2006 Jun; 173(12):1335-41. PubMed ID: 16528020
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid and Efficient Genome Editing in Staphylococcus aureus by Using an Engineered CRISPR/Cas9 System.
    Chen W; Zhang Y; Yeo WS; Bae T; Ji Q
    J Am Chem Soc; 2017 Mar; 139(10):3790-3795. PubMed ID: 28218837
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lack of association of a functional polymorphism in the interleukin 8 gene with susceptibility to periodontitis.
    Kim YJ; Viana AC; Curtis KM; Orrico SR; Cirelli JA; Scarel-Caminaga RM
    DNA Cell Biol; 2009 Apr; 28(4):185-90. PubMed ID: 19364277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Single nucleotide editing without DNA cleavage using CRISPR/Cas9-deaminase in the sea urchin embryo.
    Shevidi S; Uchida A; Schudrowitz N; Wessel GM; Yajima M
    Dev Dyn; 2017 Dec; 246(12):1036-1046. PubMed ID: 28857338
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Highly efficient biallelic genome editing of human ES/iPS cells using a CRISPR/Cas9 or TALEN system.
    Takayama K; Igai K; Hagihara Y; Hashimoto R; Hanawa M; Sakuma T; Tachibana M; Sakurai F; Yamamoto T; Mizuguchi H
    Nucleic Acids Res; 2017 May; 45(9):5198-5207. PubMed ID: 28334759
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Efficient Mitochondrial Genome Editing by CRISPR/Cas9.
    Jo A; Ham S; Lee GH; Lee YI; Kim S; Lee YS; Shin JH; Lee Y
    Biomed Res Int; 2015; 2015():305716. PubMed ID: 26448933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Genome Editing by CRISPR/Cas9 in Sorghum Through Biolistic Bombardment.
    Liu G; Li J; Godwin ID
    Methods Mol Biol; 2019; 1931():169-183. PubMed ID: 30652290
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly efficient genome editing via CRISPR-Cas9 in human pluripotent stem cells is achieved by transient BCL-XL overexpression.
    Li XL; Li GH; Fu J; Fu YW; Zhang L; Chen W; Arakaki C; Zhang JP; Wen W; Zhao M; Chen WV; Botimer GD; Baylink D; Aranda L; Choi H; Bechar R; Talbot P; Sun CK; Cheng T; Zhang XB
    Nucleic Acids Res; 2018 Nov; 46(19):10195-10215. PubMed ID: 30239926
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Efficient genomic correction methods in human iPS cells using CRISPR-Cas9 system.
    Li HL; Gee P; Ishida K; Hotta A
    Methods; 2016 May; 101():27-35. PubMed ID: 26525194
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Efficient Genome Engineering of a Virulent Klebsiella Bacteriophage Using CRISPR-Cas9.
    Shen J; Zhou J; Chen GQ; Xiu ZL
    J Virol; 2018 Sep; 92(17):. PubMed ID: 29899105
    [No Abstract]   [Full Text] [Related]  

  • 39. CRISPR/Cas9-mediated efficient genome editing via protoplast-based transformation in yeast-like fungus Aureobasidium pullulans.
    Zhang Y; Feng J; Wang P; Xia J; Li X; Zou X
    Gene; 2019 Aug; 709():8-16. PubMed ID: 31132514
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications.
    Liu C; Zhang L; Liu H; Cheng K
    J Control Release; 2017 Nov; 266():17-26. PubMed ID: 28911805
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.