These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

260 related articles for article (PubMed ID: 27499086)

  • 1. Efficient Receptive Field Tiling in Primate V1.
    Nauhaus I; Nielsen KJ; Callaway EM
    Neuron; 2016 Aug; 91(4):893-904. PubMed ID: 27499086
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circuits for local and global signal integration in primary visual cortex.
    Angelucci A; Levitt JB; Walton EJ; Hupe JM; Bullier J; Lund JS
    J Neurosci; 2002 Oct; 22(19):8633-46. PubMed ID: 12351737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity of color connectivity between primate V1 and V2.
    Roe AW; Ts'o DY
    J Neurophysiol; 1999 Nov; 82(5):2719-30. PubMed ID: 10561440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural responses in the macaque v1 to bar stimuli with various lengths presented on the blind spot.
    Matsumoto M; Komatsu H
    J Neurophysiol; 2005 May; 93(5):2374-87. PubMed ID: 15634711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
    Angelucci A; Bressloff PC
    Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diversity of Ocular Dominance Patterns in Visual Cortex Originates from Variations in Local Cortical Retinotopy.
    Najafian S; Jin J; Alonso JM
    J Neurosci; 2019 Nov; 39(46):9145-9163. PubMed ID: 31558616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surround suppression by high spatial frequency stimuli in the cat primary visual cortex.
    Osaki H; Naito T; Sadakane O; Okamoto M; Sato H
    Eur J Neurosci; 2011 Mar; 33(5):923-32. PubMed ID: 21255126
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precise alignment of micromachined electrode arrays with V1 functional maps.
    Nauhaus I; Ringach DL
    J Neurophysiol; 2007 May; 97(5):3781-9. PubMed ID: 17344376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform spatial pooling explains topographic organization and deviation from receptive-field scale invariance in primate V1.
    Chen Y; Ko H; Zemelman BV; Seidemann E; Nauhaus I
    Nat Commun; 2020 Dec; 11(1):6390. PubMed ID: 33319775
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response facilitation from the "suppressive" receptive field surround of macaque V1 neurons.
    Ichida JM; Schwabe L; Bressloff PC; Angelucci A
    J Neurophysiol; 2007 Oct; 98(4):2168-81. PubMed ID: 17686908
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scale-Invariant Visual Capabilities Explained by Topographic Representations of Luminance and Texture in Primate V1.
    Benvenuti G; Chen Y; Ramakrishnan C; Deisseroth K; Geisler WS; Seidemann E
    Neuron; 2018 Dec; 100(6):1504-1512.e4. PubMed ID: 30392796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Representation of the visual field in the primary visual area of the marmoset monkey: magnification factors, point-image size, and proportionality to retinal ganglion cell density.
    Chaplin TA; Yu HH; Rosa MG
    J Comp Neurol; 2013 Apr; 521(5):1001-19. PubMed ID: 22911425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional organization of visual cortex in the prosimian bush baby revealed by optical imaging of intrinsic signals.
    Xu X; Bosking WH; White LE; Fitzpatrick D; Casagrande VA
    J Neurophysiol; 2005 Oct; 94(4):2748-62. PubMed ID: 16000523
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stimulus ensemble and cortical layer determine V1 spatial receptive fields.
    Yeh CI; Xing D; Williams PE; Shapley RM
    Proc Natl Acad Sci U S A; 2009 Aug; 106(34):14652-7. PubMed ID: 19706551
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relationship between the local structure of orientation map and the strength of orientation tuning of neurons in monkey V1: a 2-photon calcium imaging study.
    Ikezoe K; Mori Y; Kitamura K; Tamura H; Fujita I
    J Neurosci; 2013 Oct; 33(42):16818-27. PubMed ID: 24133282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal micro-organization of orientation and spatial frequency in primate primary visual cortex.
    Nauhaus I; Nielsen KJ; Disney AA; Callaway EM
    Nat Neurosci; 2012 Dec; 15(12):1683-90. PubMed ID: 23143516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial frequency tuning in human retinotopic visual areas.
    Henriksson L; Nurminen L; Hyvärinen A; Vanni S
    J Vis; 2008 Aug; 8(10):5.1-13. PubMed ID: 19146347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial organization of receptive fields of V1 neurons of alert monkeys: comparison with responses to gratings.
    Kagan I; Gur M; Snodderly DM
    J Neurophysiol; 2002 Nov; 88(5):2557-74. PubMed ID: 12424294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of visual receptive field properties of the superior colliculus and primary visual cortex in rats.
    Li X; Sun C; Shi L
    Brain Res Bull; 2015 Aug; 117():69-80. PubMed ID: 26222378
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduction in receptive field size of macaque MT neurons in the presence of visual noise.
    Kumano H; Uka T
    J Neurophysiol; 2012 Jul; 108(1):215-26. PubMed ID: 22496523
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.