These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

498 related articles for article (PubMed ID: 27499264)

  • 1. Integrated solid-state nanopore platform for nanopore fabrication via dielectric breakdown, DNA-speed deceleration and noise reduction.
    Goto Y; Yanagi I; Matsui K; Yokoi T; Takeda K
    Sci Rep; 2016 Aug; 6():31324. PubMed ID: 27499264
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silicon nitride nanopore created by dielectric breakdown with a divalent cation: deceleration of translocation speed and identification of single nucleotides.
    Goto Y; Matsui K; Yanagi I; Takeda KI
    Nanoscale; 2019 Aug; 11(30):14426-14433. PubMed ID: 31334729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deceleration of single-stranded DNA passing through a nanopore using a nanometre-sized bead structure.
    Goto Y; Haga T; Yanagi I; Yokoi T; Takeda K
    Sci Rep; 2015 Nov; 5():16640. PubMed ID: 26559466
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state nanopore fabrication in LiCl by controlled dielectric breakdown.
    Bello J; Shim J
    Biomed Microdevices; 2018 Apr; 20(2):38. PubMed ID: 29680876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Challenges of Single-Molecule DNA Sequencing with Solid-State Nanopores.
    Goto Y; Akahori R; Yanagi I
    Adv Exp Med Biol; 2019; 1129():131-142. PubMed ID: 30968365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slowing single-stranded DNA translocation through a solid-state nanopore by decreasing the nanopore diameter.
    Akahori R; Haga T; Hatano T; Yanagi I; Ohura T; Hamamura H; Iwasaki T; Yokoi T; Anazawa T
    Nanotechnology; 2014 Jul; 25(27):275501. PubMed ID: 24960034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface modification of solid-state nanopores for sticky-free translocation of single-stranded DNA.
    Tang Z; Lu B; Zhao Q; Wang J; Luo K; Yu D
    Small; 2014 Nov; 10(21):4332-9. PubMed ID: 25044955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA translocation through a nanopore in an ultrathin self-assembled peptide membrane.
    Yu JS; Lee J; Ju M; Cho OH; Kim HM; Nam KT; Kim KB
    Nanotechnology; 2019 May; 30(19):195602. PubMed ID: 30721897
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state nanopores towards single-molecule DNA sequencing.
    Goto Y; Akahori R; Yanagi I; Takeda KI
    J Hum Genet; 2020 Jan; 65(1):69-77. PubMed ID: 31420594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prevention of Dielectric Breakdown of Nanopore Membranes by Charge Neutralization.
    Matsui K; Yanagi I; Goto Y; Takeda K
    Sci Rep; 2015 Dec; 5():17819. PubMed ID: 26634995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Discrimination of single-stranded DNA homopolymers by sieving out G-quadruplex using tiny solid-state nanopores.
    Si W; Yang H; Sha J; Zhang Y; Chen Y
    Electrophoresis; 2019 Aug; 40(16-17):2117-2124. PubMed ID: 30779188
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Assessment of 1/f noise associated with nanopores fabricated through chemically tuned controlled dielectric breakdown.
    Saharia J; Bandara YMNDY; Karawdeniya BI; Alexandrakis G; Kim MJ
    Electrophoresis; 2021 Apr; 42(7-8):899-909. PubMed ID: 33340118
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Discrimination of three types of homopolymers in single-stranded DNA with solid-state nanopores through external control of the DNA motion.
    Akahori R; Yanagi I; Goto Y; Harada K; Yokoi T; Takeda KI
    Sci Rep; 2017 Aug; 7(1):9073. PubMed ID: 28831056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving signal-to-noise performance for DNA translocation in solid-state nanopores at MHz bandwidths.
    Balan A; Machielse B; Niedzwiecki D; Lin J; Ong P; Engelke R; Shepard KL; Drndić M
    Nano Lett; 2014 Dec; 14(12):7215-20. PubMed ID: 25418589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sapphire-supported nanopores for low-noise DNA sensing.
    Xia P; Zuo J; Paudel P; Choi S; Chen X; Rahman Laskar MA; Bai J; Song W; Im J; Wang C
    Biosens Bioelectron; 2021 Feb; 174():112829. PubMed ID: 33308962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integrating nanopore sensors within microfluidic channel arrays using controlled breakdown.
    Tahvildari R; Beamish E; Tabard-Cossa V; Godin M
    Lab Chip; 2015 Mar; 15(6):1407-11. PubMed ID: 25631885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fast Fabrication of Solid-State Nanopores for DNA Molecule Analysis.
    Zhang Y; Ma D; Gu Z; Zhan L; Sha J
    Nanomaterials (Basel); 2021 Sep; 11(9):. PubMed ID: 34578767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Measurement of DNA Translocation Dynamics in a Solid-State Nanopore at 100 ns Temporal Resolution.
    Shekar S; Niedzwiecki DJ; Chien CC; Ong P; Fleischer DA; Lin J; Rosenstein JK; Drndić M; Shepard KL
    Nano Lett; 2016 Jul; 16(7):4483-9. PubMed ID: 27332998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Detection of short single-strand DNA homopolymers with ultrathin Si3N4 nanopores.
    Ma J; Qiu Y; Yuan Z; Zhang Y; Sha J; Liu L; Sun L; Ni Z; Yi H; Li D; Chen Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022719. PubMed ID: 26382444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ionic Liquid Decelerates Single-Stranded DNA Transport through Molybdenum Disulfide Nanopores.
    Gu Z; He Z; Chen F; Meng L; Feng J; Zhou R
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32618-32624. PubMed ID: 35798544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.