These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 27499277)

  • 61. Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography.
    Dhariwala B; Hunt E; Boland T
    Tissue Eng; 2004; 10(9-10):1316-22. PubMed ID: 15588392
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Advances in the Fabrication of Biomaterials for Gradient Tissue Engineering.
    Li C; Ouyang L; Armstrong JPK; Stevens MM
    Trends Biotechnol; 2021 Feb; 39(2):150-164. PubMed ID: 32650955
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Bioprinting for vascular and vascularized tissue biofabrication.
    Datta P; Ayan B; Ozbolat IT
    Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Precision extruding deposition (PED) fabrication of polycaprolactone (PCL) scaffolds for bone tissue engineering.
    Shor L; Güçeri S; Chang R; Gordon J; Kang Q; Hartsock L; An Y; Sun W
    Biofabrication; 2009 Mar; 1(1):015003. PubMed ID: 20811098
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Biomimetic method for combining the nucleus pulposus and annulus fibrosus for intervertebral disc tissue engineering.
    Lazebnik M; Singh M; Glatt P; Friis LA; Berkland CJ; Detamore MS
    J Tissue Eng Regen Med; 2011 Aug; 5(8):e179-87. PubMed ID: 21774081
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Graphene and its nanostructure derivatives for use in bone tissue engineering: Recent advances.
    Shadjou N; Hasanzadeh M
    J Biomed Mater Res A; 2016 May; 104(5):1250-75. PubMed ID: 26748447
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Biomimetic electrospun nanofibers for tissue regeneration.
    Liao S; Li B; Ma Z; Wei H; Chan C; Ramakrishna S
    Biomed Mater; 2006 Sep; 1(3):R45-53. PubMed ID: 18458387
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Electrospinning tubular scaffolds with tissue-like mechanical properties and biomimetic surface features.
    Rapoport S
    Methods Mol Biol; 2013; 1001():153-65. PubMed ID: 23494427
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Engineering complex tissues.
    Mikos AG; Herring SW; Ochareon P; Elisseeff J; Lu HH; Kandel R; Schoen FJ; Toner M; Mooney D; Atala A; Van Dyke ME; Kaplan D; Vunjak-Novakovic G
    Tissue Eng; 2006 Dec; 12(12):3307-39. PubMed ID: 17518671
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.
    Şenel Ayaz HG; Perets A; Ayaz H; Gilroy KD; Govindaraj M; Brookstein D; Lelkes PI
    Biomaterials; 2014 Oct; 35(30):8540-52. PubMed ID: 25017096
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Biomimetic Silk Architectures Outperform Animal Horns in Strength and Toughness.
    Liu Y; Li Y; Wang Q; Ren J; Ye C; Li F; Ling S; Liu Y; Ling D
    Adv Sci (Weinh); 2023 Oct; 10(29):e2303058. PubMed ID: 37596721
    [TBL] [Abstract][Full Text] [Related]  

  • 72. [Recent progress of researches in cartilage tissue engineering].
    Jin X
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2011 Feb; 25(2):187-92. PubMed ID: 21427848
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Sows' ears, silk purses and goats' milk: new production methods and medical applications for silk.
    Williams D
    Med Device Technol; 2003 Jun; 14(5):9-11. PubMed ID: 12852112
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Biomimicry, Biofabrication, and Biohybrid Systems: The Emergence and Evolution of Biological Design.
    Raman R; Bashir R
    Adv Healthc Mater; 2017 Oct; 6(20):. PubMed ID: 28881469
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Biosynthetic, biomimetic, and self-assembled vascularized Organ-on-a-Chip systems.
    Fritschen A; Blaeser A
    Biomaterials; 2021 Jan; 268():120556. PubMed ID: 33310539
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Towards bioengineered skeletal muscle: recent developments in vitro and in vivo.
    Quigley A; Ngan C; Firipis K; O'Connell CD; Pirogova E; Moulton SE; Williams RJ; Kapsa RMI
    Essays Biochem; 2021 Aug; 65(3):555-567. PubMed ID: 34342361
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Biomimetic nanopatterns as enabling tools for analysis and control of live cells.
    Kim DH; Lee H; Lee YK; Nam JM; Levchenko A
    Adv Mater; 2010 Nov; 22(41):4551-66. PubMed ID: 20803528
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Biomimetic approaches and materials in restorative and regenerative dentistry: review article.
    Singer L; Fouda A; Bourauel C
    BMC Oral Health; 2023 Feb; 23(1):105. PubMed ID: 36797710
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microscale technologies and modular approaches for tissue engineering: moving toward the fabrication of complex functional structures.
    Gauvin R; Khademhosseini A
    ACS Nano; 2011 Jun; 5(6):4258-64. PubMed ID: 21627163
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Biomimetic design of photonic materials for biomedical applications.
    Chen X; Guo Q; Chen W; Xie W; Wang Y; Wang M; You T; Pan G
    Acta Biomater; 2021 Feb; 121():143-179. PubMed ID: 33301982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.