BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27499340)

  • 1. Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS.
    Eljarrat A; López-Conesa L; Magén C; García-Lepetit N; Gačević Ž; Calleja E; Peiró F; Estradé S
    Phys Chem Chem Phys; 2016 Aug; 18(33):23264-76. PubMed ID: 27499340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Insight into the compositional and structural nano features of AlN/GaN DBRs by EELS-HAADF.
    Eljarrat A; López-Conesa L; Magén C; Gačević Z; Fernández-Garrido S; Calleja E; Estradé S; Peiró F
    Microsc Microanal; 2013 Jun; 19(3):698-705. PubMed ID: 23659641
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design and application of a relativistic Kramers-Kronig analysis algorithm.
    Eljarrat A; Koch CT
    Ultramicroscopy; 2019 Nov; 206():112825. PubMed ID: 31400584
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem.
    Humphreys CJ; Griffiths JT; Tang F; Oehler F; Findlay SD; Zheng C; Etheridge J; Martin TL; Bagot PAJ; Moody MP; Sutherland D; Dawson P; Schulz S; Zhang S; Fu WY; Zhu T; Kappers MJ; Oliver RA
    Ultramicroscopy; 2017 May; 176():93-98. PubMed ID: 28196629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optoelectronic properties of InAlN/GaN distributed bragg reflector heterostructure examined by valence electron energy loss spectroscopy.
    Eljarrat A; Estradé S; Gačević Z; Fernández-Garrido S; Calleja E; Magén C; Peiró F
    Microsc Microanal; 2012 Oct; 18(5):1143-54. PubMed ID: 23058502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale EELS analysis of dielectric function and bandgap properties in gaN and related materials.
    Brockt G; Lakner H
    Micron; 2000 Aug; 31(4):435-40. PubMed ID: 10741613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electron energy loss spectroscopy on semiconductor heterostructures for optoelectronics and photonics applications.
    Eljarrat A; López-Conesa L; Estradé S; Peiró F
    J Microsc; 2016 May; 262(2):142-50. PubMed ID: 26366876
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treating retardation effects in valence EELS spectra for Kramers-Kronig analysis.
    Stöger-Pollach M; Laister A; Schattschneider P
    Ultramicroscopy; 2008 Apr; 108(5):439-44. PubMed ID: 17689868
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four-dimensional STEM-EELS: enabling nano-scale chemical tomography.
    Jarausch K; Thomas P; Leonard DN; Twesten R; Booth CR
    Ultramicroscopy; 2009 Mar; 109(4):326-37. PubMed ID: 19246157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanometer-scale, quantitative composition mappings of InGaN layers from a combination of scanning transmission electron microscopy and energy dispersive x-ray spectroscopy.
    Pantzas K; Patriarche G; Troadec D; Gautier S; Moudakir T; Suresh S; Largeau L; Mauguin O; Voss PL; Ougazzaden A
    Nanotechnology; 2012 Nov; 23(45):455707. PubMed ID: 23089619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and compositional properties of Er-doped silicon nanoclusters/oxides for multilayered photonic devices studied by STEM-EELS.
    Eljarrat A; López-Conesa L; Rebled JM; Berencén Y; Ramírez JM; Garrido B; Magén C; Estradé S; Peiró F
    Nanoscale; 2013 Oct; 5(20):9963-70. PubMed ID: 23989957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative Chemical Mapping of InGaN Quantum Wells from Calibrated High-Angle Annular Dark Field Micrographs.
    Carvalho D; Morales FM; Ben T; García R; Redondo-Cubero A; Alves E; Lorenz K; Edwards PR; O'Donnell KP; Wetzel C
    Microsc Microanal; 2015 Aug; 21(4):994-1005. PubMed ID: 26123063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elemental electron energy loss mapping of a precipitate in a multi-component aluminium alloy.
    Mørtsell EA; Wenner S; Longo P; Andersen SJ; Marioara CD; Holmestad R
    Micron; 2016 Jul; 86():22-9. PubMed ID: 27124585
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Layer Dependence of Dielectric Response and Water-Enhanced Ambient Degradation of Highly Anisotropic Black As.
    Yun H; Ghosh S; Golani P; Koester SJ; Mkhoyan KA
    ACS Nano; 2020 May; 14(5):5988-5997. PubMed ID: 32310631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic structure analyses of BN network materials using high energy-resolution spectroscopy methods based on transmission electron microscopy.
    Terauchi M
    Microsc Res Tech; 2006 Jul; 69(7):531-7. PubMed ID: 16718665
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electronic structure analysis of (In, Ga, Al) N heterostructures on the nanometre scale using EELS.
    Lakner H; Rafferty B; Brockt G
    J Microsc; 1999 Apr; 194(1):79-83. PubMed ID: 10320542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Study of atomic resolved plasmon-loss image by spherical aberration-corrected STEM-EELS method.
    Yamazaki T; Kotaka Y; Tsukada M; Kataoka Y
    Ultramicroscopy; 2010 Aug; 110(9):1161-5. PubMed ID: 20451326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different atomic contrasts in HAADF images and EELS maps of rutile TiO2.
    Iwashimizu C; Haruta M; Nemoto T; Kurata H
    Microscopy (Oxf); 2023 Aug; 72(4):353-360. PubMed ID: 36440709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of multi-shell nanoparticles.
    Nakahigashi N; Sato Y; Terauchi M; Uehara M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i18. PubMed ID: 25359810
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of Metal Vacancies in the Mechanism of Thermal Degradation of InGaN Quantum Wells.
    Smalc-Koziorowska J; Grzanka E; Lachowski A; Hrytsak R; Grabowski M; Grzanka S; Kret S; Czernecki R; Turski H; Marona L; Markurt T; Schulz T; Albrecht M; Leszczynski M
    ACS Appl Mater Interfaces; 2021 Feb; 13(6):7476-7484. PubMed ID: 33529520
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.