These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27499737)

  • 1. Short-Term Plasticity in a Monosynaptic Reflex Pathway to Forearm Muscles after Continuous Robot-Assisted Passive Stepping.
    Nakajima T; Kamibayashi K; Kitamura T; Komiyama T; Zehr EP; Nakazawa K
    Front Hum Neurosci; 2016; 10():368. PubMed ID: 27499737
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robotic-assisted stepping modulates monosynaptic reflexes in forearm muscles in the human.
    Nakajima T; Kitamura T; Kamibayashi K; Komiyama T; Zehr EP; Hundza SR; Nakazawa K
    J Neurophysiol; 2011 Oct; 106(4):1679-87. PubMed ID: 21775718
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of corticospinal excitability related to the forearm muscle during robot-assisted stepping in humans.
    Kitamura T; Masugi Y; Yamamoto SI; Ogata T; Kawashima N; Nakazawa K
    Exp Brain Res; 2023 Apr; 241(4):1089-1100. PubMed ID: 36928923
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of movement-related afferent inputs on spinal reflexes evoked by transcutaneous spinal cord stimulation during robot-assisted passive stepping.
    Masugi Y; Kawashima N; Inoue D; Nakazawa K
    Neurosci Lett; 2016 Aug; 627():100-6. PubMed ID: 27235576
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Velocity-dependent suppression of the soleus H-reflex during robot-assisted passive stepping.
    Masugi Y; Kitamura T; Kamibayashi K; Ogawa T; Ogata T; Kawashima N; Nakazawa K
    Neurosci Lett; 2015 Jan; 584():337-41. PubMed ID: 25449873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Walking phase modulates H-reflex amplitude in flexor carpi radialis.
    Domingo A; Klimstra M; Nakajima T; Lam T; Hundza SR
    J Mot Behav; 2014; 46(1):49-57. PubMed ID: 24313749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural control of rhythmic human arm movement: phase dependence and task modulation of hoffmann reflexes in forearm muscles.
    Zehr EP; Collins DF; Frigon A; Hoogenboom N
    J Neurophysiol; 2003 Jan; 89(1):12-21. PubMed ID: 12522155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amplitude modulation of the soleus H reflex in the human during active and passive stepping movements.
    Brooke JD; Cheng J; Misiaszek JE; Lafferty K
    J Neurophysiol; 1995 Jan; 73(1):102-11. PubMed ID: 7714556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The investigation of control mechanisms of stepping rhythm in human in the air-stepping conditions during passive and voluntary leg movements].
    Solopova IA; Selionon VA; Grishin AA
    Fiziol Cheloveka; 2010; 36(5):83-94. PubMed ID: 21061673
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of sensory inputs on the soleus H-reflex amplitude during robotic passive stepping in humans.
    Kamibayashi K; Nakajima T; Fujita M; Takahashi M; Ogawa T; Akai M; Nakazawa K
    Exp Brain Res; 2010 Apr; 202(2):385-95. PubMed ID: 20044745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of cervicolumbar coupling on spinal reflexes during cycling after incomplete spinal cord injury.
    Zhou R; Parhizi B; Assh J; Alvarado L; Ogilvie R; Chong SL; Mushahwar VK
    J Neurophysiol; 2018 Dec; 120(6):3172-3186. PubMed ID: 30207867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excitability changes in human forearm corticospinal projections and spinal reflex pathways during rhythmic voluntary movement of the opposite limb.
    Carson RG; Riek S; Mackey DC; Meichenbaum DP; Willms K; Forner M; Byblow WD
    J Physiol; 2004 Nov; 560(Pt 3):929-40. PubMed ID: 15331684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rhythmic leg cycling modulates forearm muscle H-reflex amplitude and corticospinal tract excitability.
    Zehr EP; Klimstra M; Johnson EA; Carroll TJ
    Neurosci Lett; 2007 May; 419(1):10-4. PubMed ID: 17452078
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous Cervical and Lumbar Spinal Cord Stimulation Induces Facilitation of Both Spinal and Corticospinal Circuitry in Humans.
    Parhizi B; Barss TS; Mushahwar VK
    Front Neurosci; 2021; 15():615103. PubMed ID: 33958979
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bilateral Reflex Fluctuations during Rhythmic Movement of Remote Limb Pairs.
    Mezzarane RA; Nakajima T; Zehr EP
    Front Hum Neurosci; 2017; 11():355. PubMed ID: 28725191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term inhibition of spinal reflexes in multiple lower limb muscles after neuromuscular electrical stimulation of ankle plantar flexors.
    Milosevic M; Masugi Y; Obata H; Sasaki A; Popovic MR; Nakazawa K
    Exp Brain Res; 2019 Feb; 237(2):467-476. PubMed ID: 30460394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term effects of electrical nerve stimulation on spinal reciprocal inhibition depend on gait phase during passive stepping.
    Obata H; Ogawa T; Milosevic M; Kawashima N; Nakazawa K
    J Electromyogr Kinesiol; 2018 Feb; 38():151-154. PubMed ID: 29288924
    [TBL] [Abstract][Full Text] [Related]  

  • 19. H reflex analysis of segmental reflex excitability in flexor and extensor muscles.
    Garcia HA; Fisher MA; Gilai A
    Neurology; 1979 Jul; 29(7):984-91. PubMed ID: 224347
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interlimb reflexes and synaptic plasticity become evident months after human spinal cord injury.
    Calancie B; Molano MR; Broton JG
    Brain; 2002 May; 125(Pt 5):1150-61. PubMed ID: 11960903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.