BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 27499762)

  • 1. An Adaptive Defect Weighted Sampling Algorithm to Design Pseudoknotted RNA Secondary Structures.
    Zandi K; Butler G; Kharma N
    Front Genet; 2016; 7():129. PubMed ID: 27499762
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational design and experimental verification of pseudoknotted ribozymes.
    Najeh S; Zandi K; Kharma N; Perreault J
    RNA; 2023 Jun; 29(6):764-776. PubMed ID: 36868786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-objective genetic algorithm for pseudoknotted RNA sequence design.
    Taneda A
    Front Genet; 2012; 3():36. PubMed ID: 22558001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-Aided Design of Active Pseudoknotted Hammerhead Ribozymes.
    Najeh S; Zandi K; Djerroud S; Kharma N; Perreault J
    Methods Mol Biol; 2021; 2167():91-111. PubMed ID: 32712917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. aRNAque: an evolutionary algorithm for inverse pseudoknotted RNA folding inspired by Lévy flights.
    Merleau NSC; Smerlak M
    BMC Bioinformatics; 2022 Aug; 23(1):335. PubMed ID: 35964008
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-objective optimization for RNA design with multiple target secondary structures.
    Taneda A
    BMC Bioinformatics; 2015 Sep; 16():280. PubMed ID: 26335276
    [TBL] [Abstract][Full Text] [Related]  

  • 7. antaRNA--Multi-objective inverse folding of pseudoknot RNA using ant-colony optimization.
    Kleinkauf R; Houwaart T; Backofen R; Mann M
    BMC Bioinformatics; 2015 Nov; 16():389. PubMed ID: 26581440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A fast and robust iterative algorithm for prediction of RNA pseudoknotted secondary structures.
    Jabbari H; Condon A
    BMC Bioinformatics; 2014 May; 15():147. PubMed ID: 24884954
    [TBL] [Abstract][Full Text] [Related]  

  • 9. HotKnots: heuristic prediction of RNA secondary structures including pseudoknots.
    Ren J; Rastegari B; Condon A; Hoos HH
    RNA; 2005 Oct; 11(10):1494-504. PubMed ID: 16199760
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A permutation based simulated annealing algorithm to predict pseudoknotted RNA secondary structures.
    Tsang HH; Wiese KC
    Int J Bioinform Res Appl; 2015; 11(5):375-96. PubMed ID: 26558299
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of highly active double-pseudoknotted ribozymes: a combined computational and experimental study.
    Yamagami R; Kayedkhordeh M; Mathews DH; Bevilacqua PC
    Nucleic Acids Res; 2019 Jan; 47(1):29-42. PubMed ID: 30462314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel and efficient RNA secondary structure prediction using hierarchical folding.
    Jabbari H; Condon A; Zhao S
    J Comput Biol; 2008 Mar; 15(2):139-63. PubMed ID: 18312147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient algorithm for planar drawing of RNA structures with pseudoknots of any type.
    Byun Y; Han K
    J Bioinform Comput Biol; 2016 Jun; 14(3):1650009. PubMed ID: 26932273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parsing nucleic acid pseudoknotted secondary structure: algorithm and applications.
    Rastegari B; Condon A
    J Comput Biol; 2007; 14(1):16-32. PubMed ID: 17381343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic generation of pseudoknotted RNAs taxonomy.
    Quadrini M; Tesei L; Merelli E
    BMC Bioinformatics; 2023 Jun; 23(Suppl 6):575. PubMed ID: 37322429
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting pseudoknotted structures across two RNA sequences.
    Sperschneider J; Datta A; Wise MJ
    Bioinformatics; 2012 Dec; 28(23):3058-65. PubMed ID: 23044552
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inverse RNA Folding Workflow to Design and Test Ribozymes that Include Pseudoknots.
    Kayedkhordeh M; Yamagami R; Bevilacqua PC; Mathews DH
    Methods Mol Biol; 2021; 2167():113-143. PubMed ID: 32712918
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of accuracy and efficiency for RNA secondary structure prediction by sequence segmentation and MapReduce.
    Zhang B; Yehdego DT; Johnson KL; Leung MY; Taufer M
    BMC Struct Biol; 2013; 13 Suppl 1(Suppl 1):S3. PubMed ID: 24564983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pseudoknots in RNA folding landscapes.
    Kucharík M; Hofacker IL; Stadler PF; Qin J
    Bioinformatics; 2016 Jan; 32(2):187-94. PubMed ID: 26428288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A statistical sampling algorithm for RNA secondary structure prediction.
    Ding Y; Lawrence CE
    Nucleic Acids Res; 2003 Dec; 31(24):7280-301. PubMed ID: 14654704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.