These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

268 related articles for article (PubMed ID: 27499876)

  • 1. Genome-wide analysis reveals conserved transcriptional responses downstream of resting potential change in Xenopus embryos, axolotl regeneration, and human mesenchymal cell differentiation.
    Pai VP; Martyniuk CJ; Echeverri K; Sundelacruz S; Kaplan DL; Levin M
    Regeneration (Oxf); 2016 Feb; 3(1):3-25. PubMed ID: 27499876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular bioelectricity: how endogenous voltage potentials control cell behavior and instruct pattern regulation in vivo.
    Levin M
    Mol Biol Cell; 2014 Dec; 25(24):3835-50. PubMed ID: 25425556
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Endogenous bioelectrical networks store non-genetic patterning information during development and regeneration.
    Levin M
    J Physiol; 2014 Jun; 592(11):2295-305. PubMed ID: 24882814
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Meta-Analysis of Bioelectric Data in Cancer, Embryogenesis, and Regeneration.
    Srivastava P; Kane A; Harrison C; Levin M
    Bioelectricity; 2021 Mar; 3(1):42-67. PubMed ID: 34476377
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Resting potential, oncogene-induced tumorigenesis, and metastasis: the bioelectric basis of cancer in vivo.
    Lobikin M; Chernet B; Lobo D; Levin M
    Phys Biol; 2012 Dec; 9(6):065002. PubMed ID: 23196890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Endogenous Voltage Potentials and the Microenvironment: Bioelectric Signals that Reveal, Induce and Normalize Cancer.
    Chernet B; Levin M
    J Clin Exp Oncol; 2013; Suppl 1():. PubMed ID: 25525610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of cell behavior and tissue patterning by bioelectrical signals: challenges and opportunities for biomedical engineering.
    Levin M; Stevenson CG
    Annu Rev Biomed Eng; 2012; 14():295-323. PubMed ID: 22809139
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transmembrane voltage potential is an essential cellular parameter for the detection and control of tumor development in a Xenopus model.
    Chernet BT; Levin M
    Dis Model Mech; 2013 May; 6(3):595-607. PubMed ID: 23471912
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients.
    Levin M
    Bioessays; 2012 Mar; 34(3):205-17. PubMed ID: 22237730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Musashi and Plasticity of
    Chernoff EAG; Sato K; Salfity HVN; Sarria DA; Belecky-Adams T
    Front Cell Neurosci; 2018; 12():45. PubMed ID: 29535610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bioelectric regulation of innate immune system function in regenerating and intact
    Paré JF; Martyniuk CJ; Levin M
    NPJ Regen Med; 2017; 2():15. PubMed ID: 29302351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverse Drug Screening of Bioelectric Signaling and Neurotransmitter Roles: Illustrated Using a
    Sullivan KG; Levin M
    Cold Spring Harb Protoc; 2018 Mar; 2018(3):. PubMed ID: 29437995
    [No Abstract]   [Full Text] [Related]  

  • 13. Transcriptional landscapes of Axolotl (Ambystoma mexicanum).
    Caballero-Pérez J; Espinal-Centeno A; Falcon F; García-Ortega LF; Curiel-Quesada E; Cruz-Hernández A; Bako L; Chen X; Martínez O; Alberto Arteaga-Vázquez M; Herrera-Estrella L; Cruz-Ramírez A
    Dev Biol; 2018 Jan; 433(2):227-239. PubMed ID: 29291975
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Membrane potential (V
    Bhavsar MB; Cato G; Hauschild A; Leppik L; Costa Oliveira KM; Eischen-Loges MJ; Barker JH
    PeerJ; 2019; 7():e6341. PubMed ID: 30775170
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression patterns of Fgf-8 during development and limb regeneration of the axolotl.
    Han MJ; An JY; Kim WS
    Dev Dyn; 2001 Jan; 220(1):40-8. PubMed ID: 11146506
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Mesoderm-Forming Gene brachyury Regulates Ectoderm-Endoderm Demarcation in the Coral Acropora digitifera.
    Yasuoka Y; Shinzato C; Satoh N
    Curr Biol; 2016 Nov; 26(21):2885-2892. PubMed ID: 27693135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioelectric memory: modeling resting potential bistability in amphibian embryos and mammalian cells.
    Law R; Levin M
    Theor Biol Med Model; 2015 Oct; 12():22. PubMed ID: 26472354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic membrane depolarization is an early regulator of ependymoglial cell response to spinal cord injury in axolotl.
    Sabin K; Santos-Ferreira T; Essig J; Rudasill S; Echeverri K
    Dev Biol; 2015 Dec; 408(1):14-25. PubMed ID: 26477559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation.
    Adams DS; Levin M
    Cell Tissue Res; 2013 Apr; 352(1):95-122. PubMed ID: 22350846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Ambystoma mexicanum (Mexican axolotl) embryos, chemical genetics, and microarray analysis to identify signaling pathways associated with tissue regeneration.
    Ponomareva LV; Athippozhy A; Thorson JS; Voss SR
    Comp Biochem Physiol C Toxicol Pharmacol; 2015 Dec; 178():128-135. PubMed ID: 26092703
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.