BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27500022)

  • 1. In Situ Burning of Oil Spills.
    Evans DD; Mulholland GW; Baum HR; Walton WD; McGrattan KB
    J Res Natl Inst Stand Technol; 2001; 106(1):231-78. PubMed ID: 27500022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Occupational exposure to air pollutants emitted from in situ burning of offshore oil spills: a large-scale field study.
    Szwangruber M; Gjesteland I; Hollund BE; Faksness LG; Taban IC; Engen F; Holbu JW; Dolva H; Bråtveit M
    Int Marit Health; 2022; 73(1):1-9. PubMed ID: 35380168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large hydrocarbon fuel pool fires: physical characteristics and thermal emission variations with height.
    Raj PK
    J Hazard Mater; 2007 Feb; 140(1-2):280-92. PubMed ID: 17018245
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale-up considerations for surface collecting agent assisted in-situ burn crude oil spill response experiments in the Arctic: Laboratory to field-scale investigations.
    Bullock RJ; Aggarwal S; Perkins RA; Schnabel W
    J Environ Manage; 2017 Apr; 190():266-273. PubMed ID: 28063292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle and Gas Emissions from an In Situ Burn of Crude Oil on the Ocean.
    Hobbs JL
    J Air Waste Manag Assoc; 1996 Mar; 46(3):251-259. PubMed ID: 28065133
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Offshore field experiments with in-situ burning of oil: Emissions and burn efficiency.
    Faksness LG; Leirvik F; Taban IC; Engen F; Jensen HV; Holbu JW; Dolva H; Bråtveit M
    Environ Res; 2022 Apr; 205():112419. PubMed ID: 34822858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effectiveness of a chemical herder in association with in-situ burning of oil spills in ice-infested water.
    van Gelderen L; Fritt-Rasmussen J; Jomaas G
    Mar Pollut Bull; 2017 Feb; 115(1-2):345-351. PubMed ID: 28003056
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental Procedure for Laboratory Studies of In Situ Burning : Flammability and Burning Efficiency of Crude Oil.
    van Gelderen L; Jomaas G
    J Vis Exp; 2018 May; (135):. PubMed ID: 29782015
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical composition of fine particles in fresh smoke plumes from boreal wild-land fires in Europe.
    Saarnio K; Aurela M; Timonen H; Saarikoski S; Teinilä K; Mäkelä T; Sofiev M; Koskinen J; Aalto PP; Kulmala M; Kukkonen J; Hillamo R
    Sci Total Environ; 2010 May; 408(12):2527-42. PubMed ID: 20359735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of smoke from prescribed burning: Is it a public health concern?
    Haikerwal A; Reisen F; Sim MR; Abramson MJ; Meyer CP; Johnston FH; Dennekamp M
    J Air Waste Manag Assoc; 2015 May; 65(5):592-8. PubMed ID: 25947317
    [TBL] [Abstract][Full Text] [Related]  

  • 11. LNG pool fire spectral data and calculation of emissive power.
    Raj PK
    J Hazard Mater; 2007 Apr; 142(3):720-9. PubMed ID: 16920262
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Burning rate of merged pool fire on the hollow square tray.
    Wang C; Guo J; Ding Y; Wen J; Lu S
    J Hazard Mater; 2015 Jun; 290():78-86. PubMed ID: 25746567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery trajectories after in situ burning of an oiled wetland in coastal Louisiana, USA.
    Pahl JW; Mendelssohn IA; Henry CB; Hess TJ
    Environ Manage; 2003 Feb; 31(2):236-51. PubMed ID: 12520379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Keys to modeling LNG spills on water.
    Hissong DW
    J Hazard Mater; 2007 Feb; 140(3):465-77. PubMed ID: 17113709
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vegetation recovery in an oil-impacted and burned Phragmites australis tidal freshwater marsh.
    Zengel S; Weaver J; Wilder SL; Dauzat J; Sanfilippo C; Miles MS; Jellison K; Doelling P; Davis A; Fortier BK; Harris J; Panaccione J; Wall S; Nixon Z
    Sci Total Environ; 2018 Jan; 612():231-237. PubMed ID: 28850842
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ignitability of crude oil and its oil-in-water products at arctic temperature.
    Ranellone RT; Tukaew P; Shi X; Rangwala AS
    Mar Pollut Bull; 2017 Feb; 115(1-2):261-265. PubMed ID: 28012740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat release rate of enhanced large-scale open oil slick fires with Outdoor Gas Emission Sampling (OGES) system.
    Ho HH; Nair S; Rangwala AS
    Mar Pollut Bull; 2023 Jul; 192():114987. PubMed ID: 37163793
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of hypothetical LNG and fuel oil fires on water.
    Lehr W; Simecek-Beatty D
    J Hazard Mater; 2004 Feb; 107(1-2):3-9. PubMed ID: 15036638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimation of potential impacts and natural resource damages of oil.
    McCay DF; Rowe JJ; Whittier N; Sankaranarayanan S; Etkin DS
    J Hazard Mater; 2004 Feb; 107(1-2):11-25. PubMed ID: 15036639
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of azeotropism on combustion characteristics of blended fuel pool fire.
    Ding Y; Wang C; Lu S
    J Hazard Mater; 2014 Apr; 271():82-8. PubMed ID: 24632362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.