These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 27500291)
1. Plasmonic coupling of dual gold nanoprobes for SERS imaging of sialic acids on living cells. Song W; Ding L; Chen Y; Ju H Chem Commun (Camb); 2016 Aug; 52(70):10640-3. PubMed ID: 27500291 [TBL] [Abstract][Full Text] [Related]
2. Highly sensitive SERS detection and quantification of sialic acid on single cell using photonic-crystal fiber with gold nanoparticles. Gong T; Cui Y; Goh D; Voon KK; Shum PP; Humbert G; Auguste JL; Dinh XQ; Yong KT; Olivo M Biosens Bioelectron; 2015 Feb; 64():227-33. PubMed ID: 25222325 [TBL] [Abstract][Full Text] [Related]
3. Tunable and amplified Raman gold nanoprobes for effective tracking (TARGET): in vivo sensing and imaging. Gandra N; Hendargo HC; Norton SJ; Fales AM; Palmer GM; Vo-Dinh T Nanoscale; 2016 Apr; 8(16):8486-94. PubMed ID: 27064259 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing cancer cell lines at a single living cell level via detection of sialic acid by dual-channel plasmonic imaging and by using a SERS-microfluidic droplet platform. Cong L; Liang L; Cao F; Sun D; Yue J; Xu W; Liang C; Xu S Mikrochim Acta; 2019 May; 186(6):367. PubMed ID: 31115772 [TBL] [Abstract][Full Text] [Related]
5. Single gold trimers and 3D superstructures exhibit a polarization-independent SERS response. Steinigeweg D; Schütz M; Schlücker S Nanoscale; 2013 Jan; 5(1):110-3. PubMed ID: 23076725 [TBL] [Abstract][Full Text] [Related]
6. Boronic acid recognition based-gold nanoparticle-labeling strategy for the assay of sialic acid expression on cancer cell surface by inductively coupled plasma mass spectrometry. Zhang X; Chen B; He M; Zhang Y; Peng L; Hu B Analyst; 2016 Feb; 141(4):1286-93. PubMed ID: 26811850 [TBL] [Abstract][Full Text] [Related]
7. Application of surface enhanced Raman spectroscopy as a diagnostic system for hypersialylated metastatic cancers. Shashni B; Horiguchi Y; Kurosu K; Furusho H; Nagasaki Y Biomaterials; 2017 Jul; 134():143-153. PubMed ID: 28460336 [TBL] [Abstract][Full Text] [Related]
8. Plasmonics-Based Detection of Virus Using Sialic Acid Functionalized Gold Nanoparticles. Lee C; Wang P; Gaston MA; Weiss AA; Zhang P Methods Mol Biol; 2017; 1571():109-116. PubMed ID: 28281252 [TBL] [Abstract][Full Text] [Related]
9. Characteristics of surface-enhanced Raman scattering and surface-enhanced fluorescence using a single and a double layer gold nanostructure. Hossain MK; Huang GG; Kaneko T; Ozaki Y Phys Chem Chem Phys; 2009 Sep; 11(34):7484-90. PubMed ID: 19690723 [TBL] [Abstract][Full Text] [Related]
10. Controlled assembly and plasmonic properties of asymmetric core-satellite nanoassemblies. Yoon JH; Lim J; Yoon S ACS Nano; 2012 Aug; 6(8):7199-208. PubMed ID: 22827455 [TBL] [Abstract][Full Text] [Related]
11. Detection of cell-surface sialic acids and photodynamic eradication of cancer cells using dye-modified polydopamine-coated gold nanobipyramids. Cao Y; Han S; Zhang H; Wang J; Jiang QY; Zhou Y; Yu YJ; Wang J; Chen F; Ng DKP J Mater Chem B; 2021 Jul; 9(29):5780-5784. PubMed ID: 34269776 [TBL] [Abstract][Full Text] [Related]
12. Plasmonic Nanoassemblies: Tentacles Beat Satellites for Boosting Broadband NIR Plasmon Coupling Providing a Novel Candidate for SERS and Photothermal Therapy. Dey P; Tabish TA; Mosca S; Palombo F; Matousek P; Stone N Small; 2020 Mar; 16(10):e1906780. PubMed ID: 31997560 [TBL] [Abstract][Full Text] [Related]
13. Myoglobin and Polydopamine-Engineered Raman Nanoprobes for Detecting, Imaging, and Monitoring Reactive Oxygen Species in Biological Samples and Living Cells. Kumar S; Kumar A; Kim GH; Rhim WK; Hartman KL; Nam JM Small; 2017 Nov; 13(43):. PubMed ID: 28902980 [TBL] [Abstract][Full Text] [Related]
14. Glucose-bridged silver nanoparticle assemblies for highly sensitive molecular recognition of sialic acid on cancer cells via surface-enhanced raman scattering spectroscopy. Deng R; Yue J; Qu H; Liang L; Sun D; Zhang J; Liang C; Xu W; Xu S Talanta; 2018 Mar; 179():200-206. PubMed ID: 29310222 [TBL] [Abstract][Full Text] [Related]
15. One-Pot Synthesis of Multi-Branch Gold Nanoparticles and Investigation of Their SERS Performance. Lv W; Gu C; Zeng S; Han J; Jiang T; Zhou J Biosensors (Basel); 2018 Nov; 8(4):. PubMed ID: 30463357 [TBL] [Abstract][Full Text] [Related]
16. Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. Choi I; Song HD; Lee S; Yang YI; Kang T; Yi J J Am Chem Soc; 2012 Jul; 134(29):12083-90. PubMed ID: 22746373 [TBL] [Abstract][Full Text] [Related]
17. Self-assembled plasmonic vesicles of SERS-encoded amphiphilic gold nanoparticles for cancer cell targeting and traceable intracellular drug delivery. Song J; Zhou J; Duan H J Am Chem Soc; 2012 Aug; 134(32):13458-69. PubMed ID: 22831389 [TBL] [Abstract][Full Text] [Related]
18. In situ electrochemical assay of cell surface sialic acids featuring highly efficient chemoselective recognition and a dual-functionalized nanohorn probe. Qian R; Ding L; Bao L; He S; Ju H Chem Commun (Camb); 2012 Apr; 48(32):3848-50. PubMed ID: 22407220 [TBL] [Abstract][Full Text] [Related]
19. Gold nanostars for efficient in vitro and in vivo real-time SERS detection and drug delivery via plasmonic-tunable Raman/FTIR imaging. Tian F; Conde J; Bao C; Chen Y; Curtin J; Cui D Biomaterials; 2016 Nov; 106():87-97. PubMed ID: 27552319 [TBL] [Abstract][Full Text] [Related]
20. 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways. Huang KC; Bando K; Ando J; Smith NI; Fujita K; Kawata S Methods; 2014 Jul; 68(2):348-53. PubMed ID: 24556553 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]