These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 27500550)

  • 1. Improved Computation of Protein-Protein Relative Binding Energies with the Nwat-MMGBSA Method.
    Maffucci I; Contini A
    J Chem Inf Model; 2016 Sep; 56(9):1692-704. PubMed ID: 27500550
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Efficient Implementation of the Nwat-MMGBSA Method to Rescore Docking Results in Medium-Throughput Virtual Screenings.
    Maffucci I; Hu X; Fumagalli V; Contini A
    Front Chem; 2018; 6():43. PubMed ID: 29556494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Parameters for Higher Accuracy in the Computation of Binding Free Energy Differences upon Alanine Scanning Mutagenesis on Protein-Protein Interfaces.
    Simões IC; Costa IP; Coimbra JT; Ramos MJ; Fernandes PA
    J Chem Inf Model; 2017 Jan; 57(1):60-72. PubMed ID: 27936711
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of Predicted Protein-Protein Complexes by Binding Free Energy Simulations.
    Siebenmorgen T; Zacharias M
    J Chem Theory Comput; 2019 Mar; 15(3):2071-2086. PubMed ID: 30698954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Advances in implicit models of water solvent to compute conformational free energy and molecular dynamics of proteins at constant pH.
    Vorobjev YN
    Adv Protein Chem Struct Biol; 2011; 85():281-322. PubMed ID: 21920327
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of Hydration Water Plays a Key Role in Determining the Binding Thermodynamics of Protein Complexes.
    Chong SH; Ham S
    Sci Rep; 2017 Aug; 7(1):8744. PubMed ID: 28821854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Refining evERdock: Improved selection of good protein-protein complex models achieved by MD optimization and use of multiple conformations.
    Shinobu A; Takemura K; Matubayasi N; Kitao A
    J Chem Phys; 2018 Nov; 149(19):195101. PubMed ID: 30466278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A semiempirical free energy force field with charge-based desolvation.
    Huey R; Morris GM; Olson AJ; Goodsell DS
    J Comput Chem; 2007 Apr; 28(6):1145-52. PubMed ID: 17274016
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of protein-protein docking model structures using all-atom molecular dynamics simulations combined with the solution theory in the energy representation.
    Takemura K; Guo H; Sakuraba S; Matubayasi N; Kitao A
    J Chem Phys; 2012 Dec; 137(21):215105. PubMed ID: 23231264
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GroScore: Accurate Scoring of Protein-Protein Binding Poses Using Explicit-Solvent Free-Energy Calculations.
    Perthold JW; Oostenbrink C
    J Chem Inf Model; 2019 Dec; 59(12):5074-5085. PubMed ID: 31790223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long dynamics simulations of proteins using atomistic force fields and a continuum representation of solvent effects: calculation of structural and dynamic properties.
    Li X; Hassan SA; Mehler EL
    Proteins; 2005 Aug; 60(3):464-84. PubMed ID: 15959866
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing electrostatic field calculations with the Adaptive Poisson-Boltzmann Solver to predict electric fields at protein-protein interfaces II: explicit near-probe and hydrogen-bonding water molecules.
    Ritchie AW; Webb LJ
    J Phys Chem B; 2014 Jul; 118(28):7692-702. PubMed ID: 24446740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Including explicit water molecules as part of the protein structure in MM/PBSA calculations.
    Zhu YL; Beroza P; Artis DR
    J Chem Inf Model; 2014 Feb; 54(2):462-9. PubMed ID: 24432790
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A combined treatment of hydration and dynamical effects for the modeling of host-guest binding thermodynamics: the SAMPL5 blinded challenge.
    Pal RK; Haider K; Kaur D; Flynn W; Xia J; Levy RM; Taran T; Wickstrom L; Kurtzman T; Gallicchio E
    J Comput Aided Mol Des; 2017 Jan; 31(1):29-44. PubMed ID: 27696239
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incorporating receptor flexibility in the molecular design of protein interfaces.
    Li L; Liang S; Pilcher MM; Meroueh SO
    Protein Eng Des Sel; 2009 Sep; 22(9):575-86. PubMed ID: 19643976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An atomic and molecular view of the depth dependence of the free energies of solute transfer from water into lipid bilayers.
    Tejwani RW; Davis ME; Anderson BD; Stouch TR
    Mol Pharm; 2011 Dec; 8(6):2204-15. PubMed ID: 21988564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Linear interaction energy: method and applications in drug design.
    Gutiérrez-de-Terán H; Aqvist J
    Methods Mol Biol; 2012; 819():305-23. PubMed ID: 22183545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of MM/GBSA calculations based on explicit and implicit solvent simulations.
    Godschalk F; Genheden S; Söderhjelm P; Ryde U
    Phys Chem Chem Phys; 2013 May; 15(20):7731-9. PubMed ID: 23595060
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural properties and interaction energies affecting drug design. An approach combining molecular simulations, statistics, interaction energies and neural networks.
    Ioannidis D; Papadopoulos GE; Anastassopoulos G; Kortsaris A; Anagnostopoulos K
    Comput Biol Chem; 2015 Jun; 56():7-12. PubMed ID: 25748991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.