These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
342 related articles for article (PubMed ID: 27500587)
21. Stress hormone concentration in Rocky Mountain populations of the American pika (Ochotona princeps). Wilkening JL; Ray C; Sweazea KL Conserv Physiol; 2013; 1(1):cot027. PubMed ID: 27293611 [TBL] [Abstract][Full Text] [Related]
22. Understanding relationships among abundance, extirpation, and climate at ecoregional scales. Beever EA; Dobrowski SZ; Long J; Mynsberge AR; Piekielek NB Ecology; 2013 Jul; 94(7):1563-71. PubMed ID: 23951716 [TBL] [Abstract][Full Text] [Related]
23. Modeling plant species distributions under future climates: how fine scale do climate projections need to be? Franklin J; Davis FW; Ikegami M; Syphard AD; Flint LE; Flint AL; Hannah L Glob Chang Biol; 2013 Feb; 19(2):473-83. PubMed ID: 23504785 [TBL] [Abstract][Full Text] [Related]
24. Cetacean range and climate in the eastern North Atlantic: future predictions and implications for conservation. Lambert E; Pierce GJ; Hall K; Brereton T; Dunn TE; Wall D; Jepson PD; Deaville R; MacLeod CD Glob Chang Biol; 2014 Jun; 20(6):1782-93. PubMed ID: 24677422 [TBL] [Abstract][Full Text] [Related]
25. Incorporating abundance information and guiding variable selection for climate-based ensemble forecasting of species' distributional shifts. Tanner EP; Papeş M; Elmore RD; Fuhlendorf SD; Davis CA PLoS One; 2017; 12(9):e0184316. PubMed ID: 28886075 [TBL] [Abstract][Full Text] [Related]
26. Incorporating spatial autocorrelation into species distribution models alters forecasts of climate-mediated range shifts. Crase B; Liedloff A; Vesk PA; Fukuda Y; Wintle BA Glob Chang Biol; 2014 Aug; 20(8):2566-79. PubMed ID: 24845950 [TBL] [Abstract][Full Text] [Related]
27. Radiocarbon dating of American pika fecal pellets provides insights into population extirpations and climate refugia. Millar CI; Heckman K; Swanston C; Schmidt K; Westfall RD; Delany DL Ecol Appl; 2014; 24(7):1748-68. PubMed ID: 29210235 [TBL] [Abstract][Full Text] [Related]
29. Species-free species distribution models describe macroecological properties of protected area networks. Robinson JL; Fordyce JA PLoS One; 2017; 12(3):e0173443. PubMed ID: 28301488 [TBL] [Abstract][Full Text] [Related]
30. Life on the edge-a changing genetic landscape within an iconic American pika metapopulation over the last half century. Klingler KB; Nichols LB; Hekkala ER; Stewart JAE; Peacock MM PeerJ; 2023; 11():e15962. PubMed ID: 37790628 [TBL] [Abstract][Full Text] [Related]
31. Chromosome-Level Reference Genome Assembly for the American Pika (Ochotona princeps). Sjodin BMF; Galbreath KE; Lanier HC; Russello MA J Hered; 2021 Nov; 112(6):549-557. PubMed ID: 34036348 [TBL] [Abstract][Full Text] [Related]
32. Behavioural plasticity modulates temperature-related constraints on foraging time for a montane mammal. Hall LE; Chalfoun AD J Anim Ecol; 2019 Mar; 88(3):363-375. PubMed ID: 30449046 [TBL] [Abstract][Full Text] [Related]
33. Integrating mechanistic and correlative niche models to unravel range-limiting processes in a temperate amphibian. Enriquez-Urzelai U; Kearney MR; Nicieza AG; Tingley R Glob Chang Biol; 2019 Aug; 25(8):2633-2647. PubMed ID: 31050846 [TBL] [Abstract][Full Text] [Related]
34. What to eat in a warming world: do increased temperatures necessitate hazardous duty pay? Hall LE; Chalfoun AD Oecologia; 2018 Jan; 186(1):73-84. PubMed ID: 29128981 [TBL] [Abstract][Full Text] [Related]
35. The Combined Use of Correlative and Mechanistic Species Distribution Models Benefits Low Conservation Status Species. Rougier T; Lassalle G; Drouineau H; Dumoulin N; Faure T; Deffuant G; Rochard E; Lambert P PLoS One; 2015; 10(10):e0139194. PubMed ID: 26426280 [TBL] [Abstract][Full Text] [Related]
36. The importance of biologically relevant microclimates in habitat suitability assessments. Varner J; Dearing MD PLoS One; 2014; 9(8):e104648. PubMed ID: 25115894 [TBL] [Abstract][Full Text] [Related]
37. Putative climate adaptation in American pikas (Ochotona princeps) is associated with copy number variation across environmental gradients. Sjodin BMF; Schmidt DA; Galbreath KE; Russello MA Sci Rep; 2024 Apr; 14(1):8568. PubMed ID: 38609461 [TBL] [Abstract][Full Text] [Related]
38. Novel genomic resources for a climate change sensitive mammal: characterization of the American pika transcriptome. Lemay MA; Henry P; Lamb CT; Robson KM; Russello MA BMC Genomics; 2013 May; 14():311. PubMed ID: 23663654 [TBL] [Abstract][Full Text] [Related]
39. Comparing and synthesizing quantitative distribution models and qualitative vulnerability assessments to project marine species distributions under climate change. Allyn AJ; Alexander MA; Franklin BS; Massiot-Granier F; Pershing AJ; Scott JD; Mills KE PLoS One; 2020; 15(4):e0231595. PubMed ID: 32298349 [TBL] [Abstract][Full Text] [Related]
40. Implications of Climate Change for Bird Conservation in the Southwestern U.S. under Three Alternative Futures. Friggens MM; Finch DM PLoS One; 2015; 10(12):e0144089. PubMed ID: 26700871 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]