These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
228 related articles for article (PubMed ID: 27500789)
1. CO2 Reduction Catalyzed by Nitrogenase: Pathways to Formate, Carbon Monoxide, and Methane. Khadka N; Dean DR; Smith D; Hoffman BM; Raugei S; Seefeldt LC Inorg Chem; 2016 Sep; 55(17):8321-30. PubMed ID: 27500789 [TBL] [Abstract][Full Text] [Related]
2. Azotobacter vinelandii nitrogenases with substitutions in the FeMo-cofactor environment of the MoFe protein: effects of acetylene or ethylene on interactions with H+, HCN, and CN-. Fisher K; Dilworth MJ; Kim CH; Newton WE Biochemistry; 2000 Sep; 39(35):10855-65. PubMed ID: 10978172 [TBL] [Abstract][Full Text] [Related]
3. Electrocatalytic CO Hu B; Harris DF; Dean DR; Liu TL; Yang ZY; Seefeldt LC Bioelectrochemistry; 2018 Apr; 120():104-109. PubMed ID: 29223886 [TBL] [Abstract][Full Text] [Related]
4. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain. Scott DJ; Dean DR; Newton WE J Biol Chem; 1992 Oct; 267(28):20002-10. PubMed ID: 1328190 [TBL] [Abstract][Full Text] [Related]
5. Effects on substrate reduction of substitution of histidine-195 by glutamine in the alpha-subunit of the MoFe protein of Azotobacter vinelandii nitrogenase. Dilworth MJ; Fisher K; Kim CH; Newton WE Biochemistry; 1998 Dec; 37(50):17495-505. PubMed ID: 9860864 [TBL] [Abstract][Full Text] [Related]
6. Azotobacter vinelandii nitrogenases containing altered MoFe proteins with substitutions in the FeMo-cofactor environment: effects on the catalyzed reduction of acetylene and ethylene. Fisher K; Dilworth MJ; Kim CH; Newton WE Biochemistry; 2000 Mar; 39(11):2970-9. PubMed ID: 10715117 [TBL] [Abstract][Full Text] [Related]
7. Role of the MoFe protein alpha-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis. Kim CH; Newton WE; Dean DR Biochemistry; 1995 Mar; 34(9):2798-808. PubMed ID: 7893691 [TBL] [Abstract][Full Text] [Related]
8. 57Fe ENDOR spectroscopy and 'electron inventory' analysis of the nitrogenase E4 intermediate suggest the metal-ion core of FeMo-cofactor cycles through only one redox couple. Doan PE; Telser J; Barney BM; Igarashi RY; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2011 Nov; 133(43):17329-40. PubMed ID: 21980917 [TBL] [Abstract][Full Text] [Related]
9. Interaction of acetylene and cyanide with the resting state of nitrogenase alpha-96-substituted MoFe proteins. Benton PM; Mayer SM; Shao J; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2001 Nov; 40(46):13816-25. PubMed ID: 11705370 [TBL] [Abstract][Full Text] [Related]
10. Mechanism of Nitrogenase H Khadka N; Milton RD; Shaw S; Lukoyanov D; Dean DR; Minteer SD; Raugei S; Hoffman BM; Seefeldt LC J Am Chem Soc; 2017 Sep; 139(38):13518-13524. PubMed ID: 28851217 [TBL] [Abstract][Full Text] [Related]
11. Trapping an intermediate of dinitrogen (N2) reduction on nitrogenase. Barney BM; Lukoyanov D; Igarashi RY; Laryukhin M; Yang TC; Dean DR; Hoffman BM; Seefeldt LC Biochemistry; 2009 Sep; 48(38):9094-102. PubMed ID: 19663502 [TBL] [Abstract][Full Text] [Related]
12. Another role for CO with nitrogenase? CO stimulates hydrogen evolution catalyzed by variant Azotobacter vinelandii Mo-nitrogenases. Fisher K; Hare ND; Newton WE Biochemistry; 2014 Oct; 53(39):6151-60. PubMed ID: 25203280 [TBL] [Abstract][Full Text] [Related]
13. Evidence for multiple substrate-reduction sites and distinct inhibitor-binding sites from an altered Azotobacter vinelandii nitrogenase MoFe protein. Shen J; Dean DR; Newton WE Biochemistry; 1997 Apr; 36(16):4884-94. PubMed ID: 9125509 [TBL] [Abstract][Full Text] [Related]
14. Electron Redistribution within the Nitrogenase Active Site FeMo-Cofactor During Reductive Elimination of H Lukoyanov DA; Yang ZY; Dean DR; Seefeldt LC; Raugei S; Hoffman BM J Am Chem Soc; 2020 Dec; 142(52):21679-21690. PubMed ID: 33326225 [TBL] [Abstract][Full Text] [Related]
15. Is Mo involved in hydride binding by the four-electron reduced (E4) intermediate of the nitrogenase MoFe protein? Lukoyanov D; Yang ZY; Dean DR; Seefeldt LC; Hoffman BM J Am Chem Soc; 2010 Mar; 132(8):2526-7. PubMed ID: 20121157 [TBL] [Abstract][Full Text] [Related]
16. On reversible H2 loss upon N2 binding to FeMo-cofactor of nitrogenase. Yang ZY; Khadka N; Lukoyanov D; Hoffman BM; Dean DR; Seefeldt LC Proc Natl Acad Sci U S A; 2013 Oct; 110(41):16327-32. PubMed ID: 24062454 [TBL] [Abstract][Full Text] [Related]
17. The NifZ accessory protein has an equivalent function in maturation of both nitrogenase MoFe protein P-clusters. Jimenez-Vicente E; Yang ZY; Martin Del Campo JS; Cash VL; Seefeldt LC; Dean DR J Biol Chem; 2019 Apr; 294(16):6204-6213. PubMed ID: 30846561 [TBL] [Abstract][Full Text] [Related]
18. A conformational equilibrium in the nitrogenase MoFe protein with an α-V70I amino acid substitution illuminates the mechanism of H Lukoyanov DA; Yang ZY; Shisler K; Peters JW; Raugei S; Dean DR; Seefeldt LC; Hoffman BM Faraday Discuss; 2023 Jul; 243(0):231-252. PubMed ID: 37021412 [TBL] [Abstract][Full Text] [Related]
19. Localization of a substrate binding site on the FeMo-cofactor in nitrogenase: trapping propargyl alcohol with an alpha-70-substituted MoFe protein. Benton PM; Laryukhin M; Mayer SM; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2003 Aug; 42(30):9102-9. PubMed ID: 12885243 [TBL] [Abstract][Full Text] [Related]
20. Trapping a hydrazine reduction intermediate on the nitrogenase active site. Barney BM; Laryukhin M; Igarashi RY; Lee HI; Dos Santos PC; Yang TC; Hoffman BM; Dean DR; Seefeldt LC Biochemistry; 2005 Jun; 44(22):8030-7. PubMed ID: 15924422 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]