These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27500904)

  • 1. Microfluidic Buffer Exchange for Interference-free Micro/Nanoparticle Cell Engineering.
    Tay HM; Yeo DC; Wiraja C; Xu C; Hou HW
    J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interference-free Micro/nanoparticle Cell Engineering by Use of High-Throughput Microfluidic Separation.
    Yeo DC; Wiraja C; Zhou Y; Tay HM; Xu C; Hou HW
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20855-64. PubMed ID: 26355568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Silica nanoparticles increase human adipose tissue-derived stem cell proliferation through ERK1/2 activation.
    Kim KJ; Joe YA; Kim MK; Lee SJ; Ryu YH; Cho DW; Rhie JW
    Int J Nanomedicine; 2015; 10():2261-72. PubMed ID: 25848249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and stability of IR-820 and FITC doped silica nanoparticles.
    Thorat AV; Ghoshal T; Chen L; Holmes JD; Morris MA
    J Colloid Interface Sci; 2017 Mar; 490():294-302. PubMed ID: 27914328
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic curved-channel centrifuge for solution exchange of target microparticles and their simultaneous separation from bacteria.
    Bayat P; Rezai P
    Soft Matter; 2018 Jul; 14(26):5356-5363. PubMed ID: 29781012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.
    Keohane K; Brennan D; Galvin P; Griffin BT
    Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoparticle-based assays in automated flow systems: A review.
    Passos ML; Pinto PC; Santos JL; Saraiva ML; Araujo AR
    Anal Chim Acta; 2015 Aug; 889():22-34. PubMed ID: 26343425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface engineering of organic nanoparticles for highly improved bioimaging.
    Liu Y; Zhang X; Zhou M; Chen X; Zhang X
    Colloids Surf B Biointerfaces; 2017 Nov; 159():596-604. PubMed ID: 28858662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic assembly of monodisperse, nanoparticle-incorporated perfluorocarbon microbubbles for medical imaging and therapy.
    Seo M; Gorelikov I; Williams R; Matsuura N
    Langmuir; 2010 Sep; 26(17):13855-60. PubMed ID: 20666507
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multivariate analysis for the optimization of microfluidics-assisted nanoprecipitation method intended for the loading of small hydrophilic drugs into PLGA nanoparticles.
    Chiesa E; Dorati R; Modena T; Conti B; Genta I
    Int J Pharm; 2018 Jan; 536(1):165-177. PubMed ID: 29175645
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controllable Microfluidic Production of Drug-Loaded PLGA Nanoparticles Using Partially Water-Miscible Mixed Solvent Microdroplets as a Precursor.
    Xu J; Zhang S; Machado A; Lecommandoux S; Sandre O; Gu F; Colin A
    Sci Rep; 2017 Jul; 7(1):4794. PubMed ID: 28684775
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Morphological tuning of polymeric nanoparticles via microfluidic platform for fuel cell applications.
    Hasani-Sadrabadi MM; Majedi FS; VanDersarl JJ; Dashtimoghadam E; Ghaffarian SR; Bertsch A; Moaddel H; Renaud P
    J Am Chem Soc; 2012 Nov; 134(46):18904-7. PubMed ID: 23126467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel tuneable optical elements based on nanoparticle suspensions in microfluidics.
    Kayani AA; Zhang C; Khoshmanesh K; Campbell JL; Mitchell A; Kalantar-Zadeh K
    Electrophoresis; 2010 Mar; 31(6):1071-9. PubMed ID: 20309917
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation.
    Bhagat AA; Hou HW; Li LD; Lim CT; Han J
    Lab Chip; 2011 Jun; 11(11):1870-8. PubMed ID: 21505682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of highly stable cyanine-dye-doped silica nanoparticle for biological applications.
    Lian Y; Ding LJ; Zhang W; Zhang XA; Zhang YL; Lin ZZ; Wang XD
    Methods Appl Fluoresc; 2018 Apr; 6(3):034002. PubMed ID: 29570093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial microfluidics for sheath-less high-throughput flow cytometry.
    Bhagat AA; Kuntaegowdanahalli SS; Kaval N; Seliskar CJ; Papautsky I
    Biomed Microdevices; 2010 Apr; 12(2):187-95. PubMed ID: 19946752
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells.
    Wu Z; Willing B; Bjerketorp J; Jansson JK; Hjort K
    Lab Chip; 2009 May; 9(9):1193-9. PubMed ID: 19370236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human mesenchymal stem cells labelled with dye-loaded amorphous silica nanoparticles: long-term biosafety, stemness preservation and traceability in the beating heart.
    Gallina C; CapelĂ´a T; Saviozzi S; Accomasso L; Catalano F; Tullio F; Martra G; Penna C; Pagliaro P; Turinetto V; Giachino C
    J Nanobiotechnology; 2015 Oct; 13():77. PubMed ID: 26510588
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.