These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Dataset of the molecular dynamics simulations of bilayers consisting of short amyloidogenic peptide VDSWNVLVAG from Bgl2p-glucantransferase of Glyakina AV; Balabaev NK; Galzitskaya OV Data Brief; 2016 Dec; 9():597-601. PubMed ID: 27766286 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of Amyloid Gel Formation by Several Short Amyloidogenic Peptides. Galzitskaya OV; Selivanova OM; Gorbunova EY; Mustaeva LG; Azev VN; Surin AK Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835893 [TBL] [Abstract][Full Text] [Related]
6. [Molecular mechanism of amyloid formation by Ab peptide: review of own works]. Selivanova OM; Rogachevsky VV; Syrin AK; Galzitskaya OV Biomed Khim; 2018 Jan; 64(1):94-109. PubMed ID: 29460839 [TBL] [Abstract][Full Text] [Related]
7. Identification of a novel human islet amyloid polypeptide beta-sheet domain and factors influencing fibrillogenesis. Jaikaran ET; Higham CE; Serpell LC; Zurdo J; Gross M; Clark A; Fraser PE J Mol Biol; 2001 May; 308(3):515-25. PubMed ID: 11327784 [TBL] [Abstract][Full Text] [Related]
8. New Mechanism of Amyloid Fibril Formation. Galzitskaya O Curr Protein Pept Sci; 2019; 20(6):630-640. PubMed ID: 30686252 [TBL] [Abstract][Full Text] [Related]
9. Preparation of Crystalline Samples of Amyloid Fibrils and Oligomers. Moshe A; Landau M; Eisenberg D Methods Mol Biol; 2016; 1345():201-10. PubMed ID: 26453214 [TBL] [Abstract][Full Text] [Related]
10. C-Terminal sequence is involved in the incorporation of Bgl2p glucanosyltransglycosylase in the cell wall of Saccharomyces cerevisiae. Sabirzyanov FA; Sabirzyanova TA; Rekstina VV; Adzhubei AA; Kalebina TS FEMS Yeast Res; 2018 Feb; 18(1):. PubMed ID: 29272386 [TBL] [Abstract][Full Text] [Related]
11. To Be Fibrils or To Be Nanofilms? Oligomers Are Building Blocks for Fibril and Nanofilm Formation of Fragments of Aβ Peptide. Selivanova OM; Surin AK; Ryzhykau YL; Glyakina AV; Suvorina MY; Kuklin AI; Rogachevsky VV; Galzitskaya OV Langmuir; 2018 Feb; 34(6):2332-2343. PubMed ID: 29338255 [TBL] [Abstract][Full Text] [Related]
12. Methods for Structural Analysis of Amyloid Fibrils in Misfolding Diseases. Vadukul DM; Al-Hilaly YK; Serpell LC Methods Mol Biol; 2019; 1873():109-122. PubMed ID: 30341606 [TBL] [Abstract][Full Text] [Related]
13. Structure of the cross-beta spine of amyloid-like fibrils. Nelson R; Sawaya MR; Balbirnie M; Madsen AØ; Riekel C; Grothe R; Eisenberg D Nature; 2005 Jun; 435(7043):773-8. PubMed ID: 15944695 [TBL] [Abstract][Full Text] [Related]
15. Rosetta Stone for Amyloid Fibrils: The Key Role of Ring-Like Oligomers in Amyloidogenesis. Galzitskaya OV; Selivanova OM J Alzheimers Dis; 2017; 59(3):785-795. PubMed ID: 28671122 [TBL] [Abstract][Full Text] [Related]
16. Insulin and Lispro Insulin: What is Common and Different in their Behavior? Selivanova OM; Suvorina MY; Surin AK; Dovidchenko NV; Galzitskaya OV Curr Protein Pept Sci; 2017; 18(1):57-64. PubMed ID: 27226198 [TBL] [Abstract][Full Text] [Related]
17. Lysozyme amyloidogenesis is accelerated by specific nicking and fragmentation but decelerated by intact protein binding and conversion. Mishra R; Sörgjerd K; Nyström S; Nordigården A; Yu YC; Hammarström P J Mol Biol; 2007 Feb; 366(3):1029-44. PubMed ID: 17196616 [TBL] [Abstract][Full Text] [Related]
18. Induction of beta-sheet structure in amyloidogenic peptides by neutralization of aspartate: a model for amyloid nucleation. Orpiszewski J; Benson MD J Mol Biol; 1999 Jun; 289(2):413-28. PubMed ID: 10366514 [TBL] [Abstract][Full Text] [Related]
19. Solution conformation and amyloid-like fibril formation of a polar peptide derived from a beta-hairpin in the OspA single-layer beta-sheet. Ohnishi S; Koide A; Koide S J Mol Biol; 2000 Aug; 301(2):477-89. PubMed ID: 10926522 [TBL] [Abstract][Full Text] [Related]