These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 27500924)
1. Laboratory Simulation of an Iron(II)-rich Precambrian Marine Upwelling System to Explore the Growth of Photosynthetic Bacteria. Maisch M; Wu W; Kappler A; Swanner ED J Vis Exp; 2016 Jul; (113):. PubMed ID: 27500924 [TBL] [Abstract][Full Text] [Related]
2. Characterization of the physiology and cell-mineral interactions of the marine anoxygenic phototrophic Fe(II) oxidizer Rhodovulum iodosum--implications for Precambrian Fe(II) oxidation. Wu W; Swanner ED; Hao L; Zeitvogel F; Obst M; Pan Y; Kappler A FEMS Microbiol Ecol; 2014 Jun; 88(3):503-15. PubMed ID: 24606418 [TBL] [Abstract][Full Text] [Related]
3. Microbial processes during deposition and diagenesis of Banded Iron Formations. Dreher CL; Schad M; Robbins LJ; Konhauser KO; Kappler A; Joshi P Palaontol Z; 2021; 95(4):593-610. PubMed ID: 35034981 [TBL] [Abstract][Full Text] [Related]
4. Dissolved silica affects the bulk iron redox state and recrystallization of minerals generated by photoferrotrophy in a simulated Archean ocean. Zhou A; Templeton AS; Johnson JE Geobiology; 2024; 22(1):e12587. PubMed ID: 38385601 [TBL] [Abstract][Full Text] [Related]
5. Phototrophic Fe(II)-oxidation in the chemocline of a ferruginous meromictic lake. Walter XA; Picazo A; Miracle MR; Vicente E; Camacho A; Aragno M; Zopfi J Front Microbiol; 2014; 5():713. PubMed ID: 25538702 [TBL] [Abstract][Full Text] [Related]
6. Photoferrotrophy, deposition of banded iron formations, and methane production in Archean oceans. Thompson KJ; Kenward PA; Bauer KW; Warchola T; Gauger T; Martinez R; Simister RL; Michiels CC; Llirós M; Reinhard CT; Kappler A; Konhauser KO; Crowe SA Sci Adv; 2019 Nov; 5(11):eaav2869. PubMed ID: 31807693 [TBL] [Abstract][Full Text] [Related]
7. Oxic Fe(III) reduction could have generated Fe(II) in the photic zone of Precambrian seawater. Swanner ED; Maisch M; Wu W; Kappler A Sci Rep; 2018 Mar; 8(1):4238. PubMed ID: 29523861 [TBL] [Abstract][Full Text] [Related]
8. Planktonic marine iron oxidizers drive iron mineralization under low-oxygen conditions. Field EK; Kato S; Findlay AJ; MacDonald DJ; Chiu BK; Luther GW; Chan CS Geobiology; 2016 Sep; 14(5):499-508. PubMed ID: 27384464 [TBL] [Abstract][Full Text] [Related]
9. The distribution of active iron-cycling bacteria in marine and freshwater sediments is decoupled from geochemical gradients. Otte JM; Harter J; Laufer K; Blackwell N; Straub D; Kappler A; Kleindienst S Environ Microbiol; 2018 Jul; 20(7):2483-2499. PubMed ID: 29708639 [TBL] [Abstract][Full Text] [Related]
10. The role of microaerophilic Fe-oxidizing micro-organisms in producing banded iron formations. Chan CS; Emerson D; Luther GW Geobiology; 2016 Sep; 14(5):509-28. PubMed ID: 27392195 [TBL] [Abstract][Full Text] [Related]
11. Products of the iron cycle on the early Earth. Tosca NJ; Jiang CZ; Rasmussen B; Muhling J Free Radic Biol Med; 2019 Aug; 140():138-153. PubMed ID: 31071438 [TBL] [Abstract][Full Text] [Related]
12. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Ehrenreich A; Widdel F Appl Environ Microbiol; 1994 Dec; 60(12):4517-26. PubMed ID: 7811087 [TBL] [Abstract][Full Text] [Related]
13. Photoferrotrophs thrive in an Archean Ocean analogue. Crowe SA; Jones C; Katsev S; Magen C; O'Neill AH; Sturm A; Canfield DE; Haffner GD; Mucci A; Sundby B; Fowle DA Proc Natl Acad Sci U S A; 2008 Oct; 105(41):15938-43. PubMed ID: 18838679 [TBL] [Abstract][Full Text] [Related]
14. Biologically recycled continental iron is a major component in banded iron formations. Li W; Beard BL; Johnson CM Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8193-8. PubMed ID: 26109570 [TBL] [Abstract][Full Text] [Related]
15. Oxygen produced by cyanobacteria in simulated Archaean conditions partly oxidizes ferrous iron but mostly escapes-conclusions about early evolution. Rantamäki S; Meriluoto J; Spoof L; Puputti EM; Tyystjärvi T; Tyystjärvi E Photosynth Res; 2016 Dec; 130(1-3):103-111. PubMed ID: 26895438 [TBL] [Abstract][Full Text] [Related]
16. Morphology of biogenic iron oxides records microbial physiology and environmental conditions: toward interpreting iron microfossils. Krepski ST; Emerson D; Hredzak-Showalter PL; Luther GW; Chan CS Geobiology; 2013 Sep; 11(5):457-71. PubMed ID: 23790206 [TBL] [Abstract][Full Text] [Related]
17. Quantitative analysis of O2 and Fe2+ profiles in gradient tubes for cultivation of microaerophilic Iron(II)-oxidizing bacteria. Lueder U; Druschel G; Emerson D; Kappler A; Schmidt C FEMS Microbiol Ecol; 2018 Feb; 94(2):. PubMed ID: 29228192 [TBL] [Abstract][Full Text] [Related]
18. The photochemistry of manganese and the origin of Banded Iron Formations. Anbar AD; Holland HD Geochim Cosmochim Acta; 1992 Jul; 56(7):2595-603. PubMed ID: 11537803 [TBL] [Abstract][Full Text] [Related]
19. Microbial production of isotopically light iron(II) in a modern chemically precipitated sediment and implications for isotopic variations in ancient rocks. Tangalos GE; Beard BL; Johnson CM; Alpers CN; Shelobolina ES; Xu H; Konishi H; Roden EE Geobiology; 2010 Jun; 8(3):197-208. PubMed ID: 20374296 [TBL] [Abstract][Full Text] [Related]
20. Highly Siderophile Elements and Coupled Fe-Os Isotope Signatures in the Temagami Iron Formation, Canada: Possible Signatures of Neoarchean Seawater Chemistry and Earth's Oxygenation History. Schulz T; Viehmann S; Hezel DC; Koeberl C; Bau M Astrobiology; 2021 Aug; 21(8):924-939. PubMed ID: 34406808 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]