BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27501031)

  • 1. Removal of volatile fatty acids and ammonia recovery from unstable anaerobic digesters with a microbial electrolysis cell.
    Cerrillo M; Viñas M; Bonmatí A
    Bioresour Technol; 2016 Nov; 219():348-356. PubMed ID: 27501031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling the active microbial community in a thermophilic anaerobic digester-microbial electrolysis cell coupled system under different conditions.
    Cerrillo M; Viñas M; Bonmatí A
    Water Res; 2017 Mar; 110():192-201. PubMed ID: 28006709
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overcoming organic and nitrogen overload in thermophilic anaerobic digestion of pig slurry by coupling a microbial electrolysis cell.
    Cerrillo M; Viñas M; Bonmatí A
    Bioresour Technol; 2016 Sep; 216():362-72. PubMed ID: 27259192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbial communities change in an anaerobic digestion after application of microbial electrolysis cells.
    Lee B; Park JG; Shin WB; Tian DJ; Jun HB
    Bioresour Technol; 2017 Jun; 234():273-280. PubMed ID: 28334663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Volatile fatty acids (VFAs) production from swine manure through short-term dry anaerobic digestion and its separation from nitrogen and phosphorus resources in the digestate.
    Huang W; Huang W; Yuan T; Zhao Z; Cai W; Zhang Z; Lei Z; Feng C
    Water Res; 2016 Mar; 90():344-353. PubMed ID: 26766158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbial electrolysis enhanced bioconversion of waste sludge lysate for hydrogen production compared with anaerobic digestion.
    Yu Z; Liu W; Shi Y; Wang B; Huang C; Liu C; Wang A
    Sci Total Environ; 2021 May; 767():144344. PubMed ID: 33434845
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pre-digestion to enhance volatile fatty acids (VFAs) concentration as a carbon source for denitrification in treatment of liquid swine manure.
    Wu SX; Chen L; Zhu J; Walquist M; Christian D
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018 Aug; 53(10):891-898. PubMed ID: 29708831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC)--anaerobic reactor.
    Zhang J; Zhang Y; Quan X; Chen S
    Water Res; 2013 Oct; 47(15):5719-28. PubMed ID: 23886545
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of anaerobic digester and microbial fuel cell for COD removal and ammonia recovery.
    Kim T; An J; Jang JK; Chang IS
    Bioresour Technol; 2015 Nov; 195():217-22. PubMed ID: 26142819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fermentation pre-treatment of landfill leachate for enhanced electron recovery in a microbial electrolysis cell.
    Mahmoud M; Parameswaran P; Torres CI; Rittmann BE
    Bioresour Technol; 2014 Jan; 151():151-8. PubMed ID: 24231265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mitigating ammonia inhibition of thermophilic anaerobic treatment of digested piggery wastewater: use of pH reduction, zeolite, biomass and humic acid.
    Ho L; Ho G
    Water Res; 2012 Sep; 46(14):4339-50. PubMed ID: 22739499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative assessment of raw and digested pig slurry treatment in bioelectrochemical systems.
    Cerrillo M; Oliveras J; Viñas M; Bonmatí A
    Bioelectrochemistry; 2016 Aug; 110():69-78. PubMed ID: 27093494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous hydrogen production from food waste by anaerobic digestion (AD) coupled single-chamber microbial electrolysis cell (MEC) under negative pressure.
    Huang J; Feng H; Huang L; Ying X; Shen D; Chen T; Shen X; Zhou Y; Xu Y
    Waste Manag; 2020 Feb; 103():61-66. PubMed ID: 31865036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Utilizing ion-exchange resin to improve recovery from organic shock-loading in an AnMBR treating sewage sludge.
    Martin-Ryals AD; Schideman LC; Guy K
    Water Res; 2017 Dec; 126():285-298. PubMed ID: 28965031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bio-electrolytic sensor for rapid monitoring of volatile fatty acids in anaerobic digestion process.
    Jin X; Li X; Zhao N; Angelidaki I; Zhang Y
    Water Res; 2017 Mar; 111():74-80. PubMed ID: 28049049
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tolerance response to in situ ammonia stress in a pilot-scale anaerobic digestion reactor for alleviating ammonia inhibition.
    Gao S; Zhao M; Chen Y; Yu M; Ruan W
    Bioresour Technol; 2015 Dec; 198():372-9. PubMed ID: 26409107
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of pre-fermentation and pulsed-electric-field treatment of primary sludge in microbial electrochemical cells.
    Ki D; Parameswaran P; Popat SC; Rittmann BE; Torres CI
    Bioresour Technol; 2015 Nov; 195():83-8. PubMed ID: 26159378
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ammonium Recovery and Biogas Upgrading in a Tubular Micro-Pilot Microbial Electrolysis Cell (MEC).
    Cristiani L; Zeppilli M; Porcu C; Majone M
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32545472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced anaerobic digestion of organic contaminants containing diverse microbial population by combined microbial electrolysis cell (MEC) and anaerobic reactor under Fe(III) reducing conditions.
    Zhang J; Zhang Y; Quan X; Chen S; Afzal S
    Bioresour Technol; 2013 May; 136():273-80. PubMed ID: 23567691
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.