These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 27501041)
1. Filamentary superhydrophobic Teflon surfaces: Moderate apparent contact angle but superior air-retaining properties. Di Mundo R; Bottiglione F; Palumbo F; Notarnicola M; Carbone G J Colloid Interface Sci; 2016 Nov; 482():175-182. PubMed ID: 27501041 [TBL] [Abstract][Full Text] [Related]
2. Plasma-Textured Teflon: Repulsion in Air of Water Droplets and Drag Reduction Underwater. Di Mundo R; Bottiglione F; Notarnicola M; Palumbo F; Pascazio G Biomimetics (Basel); 2017 Jan; 2(1):. PubMed ID: 31105164 [TBL] [Abstract][Full Text] [Related]
3. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
4. Impact of air and water vapor environments on the hydrophobicity of surfaces. Weisensee PB; Neelakantan NK; Suslick KS; Jacobi AM; King WP J Colloid Interface Sci; 2015 Sep; 453():177-185. PubMed ID: 25985421 [TBL] [Abstract][Full Text] [Related]
5. Direct observation of drops on slippery lubricant-infused surfaces. Schellenberger F; Xie J; Encinas N; Hardy A; Klapper M; Papadopoulos P; Butt HJ; Vollmer D Soft Matter; 2015 Oct; 11(38):7617-26. PubMed ID: 26291621 [TBL] [Abstract][Full Text] [Related]
6. Drop rebound after impact: the role of the receding contact angle. Antonini C; Villa F; Bernagozzi I; Amirfazli A; Marengo M Langmuir; 2013 Dec; 29(52):16045-50. PubMed ID: 24028086 [TBL] [Abstract][Full Text] [Related]
7. Drop shedding by shear flow for hydrophilic to superhydrophobic surfaces. Milne AJ; Amirfazli A Langmuir; 2009 Dec; 25(24):14155-64. PubMed ID: 19685896 [TBL] [Abstract][Full Text] [Related]
8. Following the wetting of one-dimensional photoactive surfaces. Macias-Montero M; Borras A; Alvarez R; Gonzalez-Elipe AR Langmuir; 2012 Oct; 28(42):15047-55. PubMed ID: 22998211 [TBL] [Abstract][Full Text] [Related]
9. Drop detachment and motion on fuel cell electrode materials. Gauthier E; Hellstern T; Kevrekidis IG; Benziger J ACS Appl Mater Interfaces; 2012 Feb; 4(2):761-71. PubMed ID: 22201518 [TBL] [Abstract][Full Text] [Related]
10. Fabrication of superhydrophobic surfaces with hierarchical structure through a solution-immersion process on copper and galvanized iron substrates. Xu W; Liu H; Lu S; Xi J; Wang Y Langmuir; 2008 Oct; 24(19):10895-900. PubMed ID: 18774835 [TBL] [Abstract][Full Text] [Related]
11. How Water Advances on Superhydrophobic Surfaces. Schellenberger F; Encinas N; Vollmer D; Butt HJ Phys Rev Lett; 2016 Mar; 116(9):096101. PubMed ID: 26991185 [TBL] [Abstract][Full Text] [Related]
12. Biomimetic Superhydrophobic Films with an Extremely Low Roll-Off Angle Modified by F Zhou P; Hu T; Xu Y; Li X; Shi W; Lin Y; Xu T; Wei B Nanomaterials (Basel); 2022 Mar; 12(6):. PubMed ID: 35335766 [TBL] [Abstract][Full Text] [Related]
13. Wetting hysteresis induced by temperature changes: Supercooled water on hydrophobic surfaces. Heydari G; Sedighi Moghaddam M; Tuominen M; Fielden M; Haapanen J; Mäkelä JM; Claesson PM J Colloid Interface Sci; 2016 Apr; 468():21-33. PubMed ID: 26821148 [TBL] [Abstract][Full Text] [Related]
15. Water microdroplets on molecularly tailored surfaces: correlation between wetting hysteresis and evaporation mode switching. Soolaman DM; Yu HZ J Phys Chem B; 2005 Sep; 109(38):17967-73. PubMed ID: 16853306 [TBL] [Abstract][Full Text] [Related]
16. Superhydrophobic and adhesive properties of surfaces: testing the quality by an elaborated scanning electron microscopy method. Ensikat HJ; Mayser M; Barthlott W Langmuir; 2012 Oct; 28(40):14338-46. PubMed ID: 22978578 [TBL] [Abstract][Full Text] [Related]
17. Effect of surface texturing on superoleophobicity, contact angle hysteresis, and "robustness". Zhao H; Park KC; Law KY Langmuir; 2012 Oct; 28(42):14925-34. PubMed ID: 22992132 [TBL] [Abstract][Full Text] [Related]
18. Wetting of Surfaces Made of Hydrophobic Cavities. Lloyd BP; Bartlett PN; Wood RJ Langmuir; 2015 Sep; 31(34):9325-30. PubMed ID: 26267302 [TBL] [Abstract][Full Text] [Related]
19. A facile, fast, and low-cost method for fabrication of micro/nano-textured superhydrophobic surfaces. Esmaeili AR; Mir N; Mohammadi R J Colloid Interface Sci; 2020 Aug; 573():317-327. PubMed ID: 32289627 [TBL] [Abstract][Full Text] [Related]
20. Durable Superhydrophobic Surfaces via Spontaneous Wrinkling of Teflon AF. Scarratt LR; Hoatson BS; Wood ES; Hawkett BS; Neto C ACS Appl Mater Interfaces; 2016 Mar; 8(10):6743-50. PubMed ID: 26910574 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]