BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 27501156)

  • 1. Genetics of human origin and evolution: high-altitude adaptations.
    Bigham AW
    Curr Opin Genet Dev; 2016 Dec; 41():8-13. PubMed ID: 27501156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data.
    Bigham A; Bauchet M; Pinto D; Mao X; Akey JM; Mei R; Scherer SW; Julian CG; Wilson MJ; López Herráez D; Brutsaert T; Parra EJ; Moore LG; Shriver MD
    PLoS Genet; 2010 Sep; 6(9):e1001116. PubMed ID: 20838600
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic adaptation of the hypoxia-inducible factor pathway to oxygen pressure among eurasian human populations.
    Ji LD; Qiu YQ; Xu J; Irwin DM; Tam SC; Tang NL; Zhang YP
    Mol Biol Evol; 2012 Nov; 29(11):3359-70. PubMed ID: 22628534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Adaptive genetic changes related to haemoglobin concentration in native high-altitude Tibetans.
    Simonson TS; Huff CD; Witherspoon DJ; Prchal JT; Jorde LB
    Exp Physiol; 2015 Nov; 100(11):1263-8. PubMed ID: 26454145
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations.
    Jha AR; Zhou D; Brown CD; Kreitman M; Haddad GG; White KP
    Mol Biol Evol; 2016 Feb; 33(2):501-17. PubMed ID: 26576852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Human Genetic Adaptation to High Altitude: Evidence from the Andes.
    Julian CG; Moore LG
    Genes (Basel); 2019 Feb; 10(2):. PubMed ID: 30781443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying positive selection candidate loci for high-altitude adaptation in Andean populations.
    Bigham AW; Mao X; Mei R; Brutsaert T; Wilson MJ; Julian CG; Parra EJ; Akey JM; Moore LG; Shriver MD
    Hum Genomics; 2009 Dec; 4(2):79-90. PubMed ID: 20038496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Down-Regulation of EPAS1 Transcription and Genetic Adaptation of Tibetans to High-Altitude Hypoxia.
    Peng Y; Cui C; He Y; Ouzhuluobu ; Zhang H; Yang D; Zhang Q; Bianbazhuoma ; Yang L; He Y; Xiang K; Zhang X; Bhandari S; Shi P; Yangla ; Dejiquzong ; Baimakangzhuo ; Duojizhuoma ; Pan Y; Cirenyangji ; Baimayangji ; Gonggalanzi ; Bai C; Bianba ; Basang ; Ciwangsangbu ; Xu S; Chen H; Liu S; Wu T; Qi X; Su B
    Mol Biol Evol; 2017 Apr; 34(4):818-830. PubMed ID: 28096303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tibetan and Andean patterns of adaptation to high-altitude hypoxia.
    Beall CM
    Hum Biol; 2000 Feb; 72(1):201-28. PubMed ID: 10721618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era.
    Petousi N; Robbins PA
    J Appl Physiol (1985); 2014 Apr; 116(7):875-84. PubMed ID: 24201705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptation and mal-adaptation to ambient hypoxia; Andean, Ethiopian and Himalayan patterns.
    Xing G; Qualls C; Huicho L; Rivera-Ch M; Stobdan T; Slessarev M; Prisman E; Ito S; Wu H; Norboo A; Dolma D; Kunzang M; Norboo T; Gamboa JL; Claydon VE; Fisher J; Zenebe G; Gebremedhin A; Hainsworth R; Verma A; Appenzeller O
    PLoS One; 2008 Jun; 3(6):e2342. PubMed ID: 18523639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Measuring high-altitude adaptation.
    Moore LG
    J Appl Physiol (1985); 2017 Nov; 123(5):1371-1385. PubMed ID: 28860167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for Adaptation to the Tibetan Plateau Inferred from Tibetan Loach Transcriptomes.
    Wang Y; Yang L; Zhou K; Zhang Y; Song Z; He S
    Genome Biol Evol; 2015 Oct; 7(11):2970-82. PubMed ID: 26454018
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic determinants of Tibetan high-altitude adaptation.
    Simonson TS; McClain DA; Jorde LB; Prchal JT
    Hum Genet; 2012 Apr; 131(4):527-33. PubMed ID: 22068265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human high-altitude adaptation: forward genetics meets the HIF pathway.
    Bigham AW; Lee FS
    Genes Dev; 2014 Oct; 28(20):2189-204. PubMed ID: 25319824
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural Selection on Genes Related to Cardiovascular Health in High-Altitude Adapted Andeans.
    Crawford JE; Amaru R; Song J; Julian CG; Racimo F; Cheng JY; Guo X; Yao J; Ambale-Venkatesh B; Lima JA; Rotter JI; Stehlik J; Moore LG; Prchal JT; Nielsen R
    Am J Hum Genet; 2017 Nov; 101(5):752-767. PubMed ID: 29100088
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human adaptation to high altitude: a review of convergence between genomic and proteomic signatures.
    Sharma V; Varshney R; Sethy NK
    Hum Genomics; 2022 Jul; 16(1):21. PubMed ID: 35841113
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments.
    Zhang Q; Gou W; Wang X; Zhang Y; Ma J; Zhang H; Zhang Y; Zhang H
    Genome Biol Evol; 2016 Feb; 8(3):765-76. PubMed ID: 26907498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological and genomic evidence that selection on the transcription factor Epas1 has altered cardiovascular function in high-altitude deer mice.
    Schweizer RM; Velotta JP; Ivy CM; Jones MR; Muir SM; Bradburd GS; Storz JF; Scott GR; Cheviron ZA
    PLoS Genet; 2019 Nov; 15(11):e1008420. PubMed ID: 31697676
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia adaptations in the grey wolf (Canis lupus chanco) from Qinghai-Tibet Plateau.
    Zhang W; Fan Z; Han E; Hou R; Zhang L; Galaverni M; Huang J; Liu H; Silva P; Li P; Pollinger JP; Du L; Zhang X; Yue B; Wayne RK; Zhang Z
    PLoS Genet; 2014 Jul; 10(7):e1004466. PubMed ID: 25078401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.