These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 27501228)

  • 1. Predicting the dynamic impact behaviour of spray droplets on flat plant surfaces.
    Delele MA; Nuyttens D; Duga AT; Ambaw A; Lebeau F; Nicolai BM; Verboven P
    Soft Matter; 2016 Sep; 12(34):7195-211. PubMed ID: 27501228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micrometer-sized water droplet impingement dynamics and evaporation on a flat dry surface.
    Briones AM; Ervin JS; Putnam SA; Byrd LW; Gschwender L
    Langmuir; 2010 Aug; 26(16):13272-86. PubMed ID: 20695569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DRIFT POTENTIAL OF TILTED SHIELDED ROTARY ATOMISERS BASED ON WIND TUNNEL MEASUREMENTS.
    Salah SO; Massinon M; De Cock N; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2015; 80(3):303-12. PubMed ID: 27141728
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics simulation analysis of the effect of curved rice leaves on the deposition behaviour of droplets.
    Zheng H; Sun H; Cao Y; Lv X; Wang C; Chen Y; Yu H; Qiu W
    Plant Methods; 2023 Oct; 19(1):116. PubMed ID: 37907992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION.
    Massinon M; De Cock N; Salah SO; Lebeau F
    Commun Agric Appl Biol Sci; 2015; 80(3):313-21. PubMed ID: 27141729
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational fluid dynamics simulation experimental verification and analysis of droplets deposition behaviour on vibrating pear leaves.
    Cao Y; Xi T; Xu L; Qiu W; Guo H; Lv X; Li C
    Plant Methods; 2022 Jun; 18(1):80. PubMed ID: 35690789
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.
    Stainier C; Destain MF; Schiffers B; Lebeau F
    Commun Agric Appl Biol Sci; 2006; 71(2 Pt A):197-200. PubMed ID: 17390793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic Surface Wetting and Heat Transfer in a Droplet-Particle System of Less Than Unity Size Ratio.
    Mitra S; Evans G
    Front Chem; 2018; 6():259. PubMed ID: 30013967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. VOF simulations of the contact angle dynamics during the drop spreading: standard models and a new wetting force model.
    Malgarinos I; Nikolopoulos N; Marengo M; Antonini C; Gavaises M
    Adv Colloid Interface Sci; 2014 Oct; 212():1-20. PubMed ID: 25150614
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct and indirect drift assessment means. Part 1: PDPA laser based droplet characterisation.
    Nuyttens D; Baetens K; De Schampheleire M; Dekeyser D; Sonck B
    Commun Agric Appl Biol Sci; 2008; 73(4):749-56. PubMed ID: 19226824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Understanding dilution effects on particle-containing pesticide droplets deposition on rice leaf via developing CFD-VOF-DPM model.
    Chaoxi W; Yubin C; Yunfu C; Lujiang X; Wei Q
    Pest Manag Sci; 2024 May; ():. PubMed ID: 38804696
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Impact of droplets on inclined flowing liquid films.
    Che Z; Deygas A; Matar OK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):023032. PubMed ID: 26382528
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of droplet impact and deposit formation on leaf surfaces.
    Dong X; Zhu H; Yang X
    Pest Manag Sci; 2015 Feb; 71(2):302-8. PubMed ID: 24753323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of the spray application technology in bay laurel (Laurus nobilis).
    Nuyttens D; Braekman P; Foque D
    Commun Agric Appl Biol Sci; 2009; 74(1):85-90. PubMed ID: 20218514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of adhesion force on the height pesticide droplets bounce on impaction with cabbage leaf surfaces.
    Cao C; Song YY; Zhou ZL; Cao LD; Li FM; Huang QL
    Soft Matter; 2018 Oct; 14(39):8030-8035. PubMed ID: 30246851
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Surface Roughness on the Contact Line and Splashing Dynamics of Impacting Droplets.
    Quetzeri-Santiago MA; Castrejón-Pita AA; Castrejón-Pita JR
    Sci Rep; 2019 Oct; 9(1):15030. PubMed ID: 31636321
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamic effects and adhesion of water droplet impact on hydrophobic surfaces: bouncing or sticking.
    Li Z; Kong Q; Ma X; Zang D; Guan X; Ren X
    Nanoscale; 2017 Jun; 9(24):8249-8255. PubMed ID: 28585977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of water droplets detached from porous surfaces of relevance to PEM fuel cells.
    Theodorakakos A; Ous T; Gavaises M; Nouri JM; Nikolopoulos N; Yanagihara H
    J Colloid Interface Sci; 2006 Aug; 300(2):673-87. PubMed ID: 16774763
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic Resonance Imaging measurements of a water spray upstream and downstream of a spray nozzle exit orifice.
    Mastikhin I; Arbabi A; Bade KM
    J Magn Reson; 2016 May; 266():8-15. PubMed ID: 26999032
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.